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ABSTRACT

Nowadays, artificial neural networks (ANN) are being widely used in the representation of different
systems and physics processes. In this paper, a neural representation of the cold rolling process will be
considered. In general, once trained, the networks are capable of dealing with operational conditions
not seen during the training process, keeping acceptable errors in their responses. However, humans
cannot assimilate the knowledge kept by those networks, since such knowledge is implicit and difficult
to be extracted. For this reason, the neural networks are considered a “black-box”.

In this work, the FCANN method based on formal concept analysis (FCA) is being used in order to
extract and represent knowledge from previously trained ANN. The new FCANN approach permits to
obtain a non-redundant canonical base with minimum implications, which qualitatively describes the
process. The approach can be used to understand the relationship among the process parameters
through implication rules in different operational conditions on the load-curve of the cold rolling
process. Metrics for evaluation of the rules extraction process are also proposed, which permit a better
analysis of the results obtained.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

In the last years, the rolling process has been highly automated
and reached a high level of sophistication. In this field, the
objectives are always larger productivity and better quality of the
final product. Considering the cold rolling process, the require-
ments to enhance the quality of products are typically thickness
and shape. The extensive literature shows several strategies to
reach these objectives, inclusive through non-conventional tech-
niques as neural networks (Larkiola et al., 1996, 1998; Yang et al.,
2004), fuzzy logic (Jung et al. 1995) and genetic programming (Son
et al., 2004). The only condition for the new strategies is to
represent correctly the behavior of the process in a quantitative
and qualitative form for different operational conditions, so that
these can be used in the design of on-line control and supervision
systems.

The mathematical model of a process can be obtained through
the study of variables involved in the process. In general, many
physical models have non-linear characteristics and analytical
complexities that avoid its application in on-line systems. In
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Montmitonnet (2006), a reviewing of models for the mechanical
study of the cold strip rolling was presented. The author uses the
classification of models in 1D (slab method), 2D/3D upper bound,
finite difference and finite element methods. The 1D models,
where velocity, strain and stress field depend only on the
coordinate in the rolling direction, are based on the slab method
(Bland and Ford, 1952; Alexander, 1972). Alexander’s mathema-
tical model (Alexander, 1972), which is considered within the slab
method (1D model) as one of the most complete, will be
considered in this work. As it is already known within the rolling
theory and mentioned in Montmitonnet (2006), the 1D models
are perfect for large L/h ratios (>3) (where L is the strip/work roll
bite length and h is the output thickness). For L/h <3, the FEM
models are more appropriate. In this work, the discussed case
study has L/h =5.61, reason why the Alexander’s model is
considered. This model is non-linear and involves parameters
through complex equations of difficult analytical solution. More-
over, that model is known by requesting numerical solution with
significant computational effort. A more natural alternative to
understand this kind of process is through symbolic representa-
tion, expressing the cause-effect relation among the parameters
through qualitative rules (Cristea et al., 1997; Craven and Shavlik,
1999).

On the other hand, artificial intelligence (AI) techniques have
been proposed as an alternative to represent knowledge of real
world systems, without the necessity of a more detailed study
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Nomenclature

u = friction coefficient

Y = average yield stress (N/mm?)

g = gap (mm)

h; = strip input thickness (mm)

h, = strip output thickness (mm)

M = stiffness rolling mill modulus (N/mm)
P = rolling load per unit width (N/mm)

P,, = rolling load (N)

Tq = rolling torque (N mm/mm)

R = roll radius (mm)

ty = front tension stress (N/mm?)

t, = back tension stress (N/mm?)

W or = strip width (mm.)

E = Young modulus of the strip material

S; = yield stress in plane-strain in the entry
S, = yield stress in plane-strain in the exit

about the physical principles. Al proposes two main fields of
representation: symbolism and connectionism. The symbolic field
deals with symbolic or explicit-knowledge and the connectionist
field, where artificial neural networks (ANN) are inserted, deals
with implicit, numerical or sub-symbolic knowledge. Several
researches have shown the capacity of the ANN to represent the
most different physical systems. The application of ANN in several
metallurgical processes can be seen in extensive literature
(Andersen et al., 1992; Smartt, 1992; Aistleitner and Mattersdor-
fer, 1996; Zarate, 1998; Zarate et al., 1998; Gunasekera et al., 1998;
Zarate and Bittencout, 2001, 2002; Shlang et al., 2001; Kim et al.,
2002; Galvez et al., 2003; Yang et al., 2004, Son et al., 2004, 2005,
among others). The neural networks (NN) were proposed as an
efficient model to predict mechanical properties (Myllykoski et al.,
1996; Lenard and Zhang, 1997; Kim et al., 2008), rolling load
(Larkiola et al., 1996; Gunasekera et al., 1998; Yang et al., 2004;
Son et al., 2005 and Zarate and Bittencout, 2008) and to optimize
the operation of rolling process.

In Petty (1996), an overview of the use of modeling and
simulation based on computational techniques as finite element
methods, finite difference applications, neural networks and
expert systems were discussed. The author indicated the im-
portance of the hybrid design of intelligent optimization systems
based on experiments theory, physical models and neural net-
works. In Gams et al. (1997), a global integration structure, which
allows the integration of an arbitrary number of different systems
as input-output data acquisition, knowledge-acquisition, machine
learning, statistical systems and artificial intelligence systems
(neural networks and expert systems) into one integrated
system for control of sendzimir rolling mill, was presented. The
structure also enables the transformation of nontransparent
implicit-knowledge (neural network) into a transparent explicit-
knowledge based on decision tree. In Xiaoguang et al. (1999), a
synergetic artificial intelligence system to scheduling in finishing
train of hot strip mills was discussed. The authors establish that
fuzzy theory and expert system can simulate logical inference
ability in left-half-brain of human being, and neural networks can
simulate thinking of image in right-half-brain of human being.

Different hybrid structures for rolling process control have
been proposed in the literature. For example, in Jung et al. (1995),
a combination of fuzzy logic and neural networks was used in
controlling the strip shape in cold rolling. The authors developed a
fuzzy control algorithm based on production data and operational
knowledge. In Wang and Frayman (2002), a dynamically gener-
ated fuzzy neural network applied to torsion vibration control of
tandem cold rolling mill spindles was discussed. The proposed
structure does not need to specify initial network architecture and
fuzzy rules, constantly combined and pruned, are used to
minimize the size of the network. For this structure, irrelevant
inputs are detected and deleted. In Son et al. (2004), genetic
algorithm to select the optimal architecture of a neural network
applied in the hot rolling process was presented. In Son et al.
(2005), an on-line learning neural network was developed in
order to improve the prediction of the rolling load in hot rolling

mill. With the new structure, the thickness error of the strip was
considerably reduced. In Thangavel et al. (2006, 2007), a hybrid
controller for control of strip tension and looper height in tandem
mill was proposed. In these works, genetic algorithms are used to
search optimal fuzzy rules and membership functions of a neuro-
fuzzy system. Recently, in Zarate and Bittencout (2008) and Peng
et al. (2008), control systems for the cold rolling process, based on
ANN were presented. In Zarate and Bittencout (2008), the authors
determine the sensitivity factors from the differentiating of
previously trained neural network and these factors are used as
parameters in the proposed control system. As it can be seen,
several are the applications of ANN in the steel industry, which
motivate the research about the extraction and handling of the
knowledge learned by them.

In Mitra and Hayashi (2000), a survey about neuro-fuzzy rule
generation was presented. The aim is the fuzzy rule generation
from neural networks to make comprehensible, the knowledge
embedded within the network. The authors showed that a
learning process can be part of the knowledge-acquisition and,
in the absence of an expert, sufficient time or data the
reinforcement of learning can be resorted instead of supervised
learning. If one has knowledge expressed through linguistic rules,
a fuzzy system can be built. On the other hand, if one has data or
can learn from a simulation or the real task, ANN is more
appropriate. In reference to Hayashi and Buckley (1994), cited by
Mitra and Hayashi (2000), it was proved that any rule-based fuzzy
system may be approximated by a neural network and that any
neural network feedforward and multilayer may be approximated
by rule-based fuzzy system, which demonstrates the viability of
the usage of both techniques. As it can be observed, the FCANN
method considered in this work (Zarate et al., 2008) extracts the
knowledge learned by the NN about the process through an
implication rules minimal base, i.e.,, a minimum rules set. If a
neural network hypothetically learns from representative data of
the process, and presents a “zero” error in the training, all
extracted knowledge will be an unconditional truth due to
characteristics of this extracted rules set. In short, given a
representative data set, a good training process and a satisfactory
knowledge-acquisition of the network, the extracted rules do not
need a forwarding refining as in the neuro-fuzzy rule generation,
which demands the generation and refining of rules. This shows
the relevance and contribution of the FCANN method.

Due to the amount of techniques for knowledge extraction
from neural networks, a classification of them was necessary. In
Andrews and Geva (2002), a new taxonomy to classify these
techniques was introduced. From that taxonomy, it was possible
to observe five primary classification criteria for different
techniques: (a) the expressive power or rule format that corre-
sponds to the rule extraction in various formats (propositional
rules, fuzzy rules, scientific laws and others); (b) the translucency
that permits to reveal the relationship between the extracted
rules and the internal architecture of the trained neural network;
(c) the portability of the rule extraction technique for different NN
architectures; (d) the quality of the extracted rules; and (e) the
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algorithmic complexity of techniques for rule refinement. The
second proposed dimension, translucency, has two categories
involving the decompositional and pedagogical techniques. The
methods in the pedagogical category consider the trained neural
network as a “black-box”. The pedagogical techniques map inputs
directly to output, generating examples that can be used for the
symbolic learning algorithms. The FCANN method corresponds to
the category of the pedagogical techniques.

Through the reviewing in the literature, it was possible to
observe that the typical neural topology considered for different
contributions corresponds to a totally connected feedforward
multilayer perceptron. This is due to the great capacity that this
type of neural network has to relate variables from data of the
process and, due to their generalization capacity and low
computational time that can be reached when in operation, what
makes its usage attractive to the industrial sector. These networks
can be used when the mathematical dominant model of a process
is difficult to be obtained. NN can be trained through a data set
measured directly from the real process, diminishing the time
spent to obtain an analytical representation of the process from
physics laws.

ANN have a mathematical function that relates the input and
output parameters of a system from data. However, as mentioned
before, that characteristic makes ANN a “black-box” because no
explanation can be attributed to them for decision-making when
in operation. ANN relates values from the training sets—provided
to them-and informs their responses, but information about the
generation principles is left aside. Thus, there is some implicit-
knowledge hard to extract, which, if extracted, can reinforce an
intelligent machine in its mechanism to explain its conclusions.
The extracted knowledge can be expressed through symbolic
rules, allowing the knowledge of the problem into its real context.
In this work, the FCANN method to extract and represent
knowledge from previously trained ANN based on formal concept
analysis (FCA) will be applied to neural representation of the cold
rolling process. In Zarate et al. (2008), the FCANN method was
compared with conventional techniques of knowledge extraction
such as TREPAN and C4.5 algorithms. Those comparisons showed
the method relevance to extract qualitative knowledge of the
process through implication rules of the type “if...then...”, that
are easy to understand. The FCANN method extracts the
qualitative relations learned by the network, independently of
its input-output structure, while conventional techniques aim to
extract the knowledge working simply as a classifier. Moreover,
the FCANN method revealed capable to represent different types
of processes learned by ANN such as solar energy system, climatic
behavior and evaluation of urban real estate, among others.

The experience shows that for industrial applications, any new
approach, technique or method to extract knowledge from
previously trained ANN must look for a symbolic representation
of easy understanding, moreover being independent of the structure
of the network considered. The FCANN approach gathers these
characteristics and permits to change the detail level of the
behavior rules “if...then...” generated, which can describe the
process in study without requiring a new training process better.

On the other hand, considering the cold rolling process, the
equation that governs a single stand rolling mill is a non-linear
function on several parameters: input thickness, front and back
tensions, average yield stress and friction coefficient. Any
alterations on either of them will cause alterations on the rolling
load and, consequently, on the outgoing thickness. In this work,
the main objective is to represent through qualitative rules,
extracted from previously trained neural network, the behavior of
the cold rolling process via the FCANN method. This method
permits to map the behavior of the process for different
operational conditions on the load-curve. One motivation for this

research is to capture knowledge about physical systems via
qualitative rules to provide the understanding of the process by
less-experienced operators. Moreover, it provides information
about the analyzed process that can be used in the design of on-
line control and supervision systems.

This work is about the neural representation of the cold rolling
process and the extraction of knowledge from neural networks
using the FCANN method. Metrics that evaluate the quality of the
extracted knowledge are also presented. Thus, this paper
discusses, in a generic form, the adopted procedures that can be
extended for other industrial processes.

This paper is organized in seven sections. In the second one, a
revision of the cold rolling process is presented. In the third one,
neural representation of the process, based on Alexander’s model,
is discussed. In the fourth one, the FCANN theoretical fundaments
are presented. In the fifth one, the extraction of knowledge
applied for the cold rolling process is showed. Finally, the
contributions and the conclusions of this work are presented.

2. Cold rolling process

Into classical theories (1D model), there are several models to
calculate the rolling load necessary for the deformation process.
These models, Eq. (1), are non-linear functions of several
parameters, where it is possible to observe that any change in
the input thickness (h;), in the output thickness (h,), in the back
tension (&), in the front tension (), in the yield stress (Y) and/or
friction coefficient (u), will cause alterations on the rolling load (P)
and, consequently, on the outgoing thickness.

P:f(hi,ho,tb,tf,ﬂ, Y’E’R) (1)

where (E) is the Young’s modulus of the strip material and (R) is
the roll radius.

During the rolling process, the cylinders are compressed
against the strip by a force transmitted by the back rolls. Since
the rolling mill is not perfectly rigid, the output thickness can be
expressed by the elastic equation of the rolling mill, Eq. (2).
ho=g+ V! ()
where (g) being the roll-gap or “gap”, (W) the width of the
material being rolled, (M) the mill modulus and (P) rolling load
per unit width.

In order to illustrate the behavior of a rolling mill, Fig. 1 (Dieter,
1976) shows variations in the nominal operational condition due
to the variation in several parameters. Curve (I) corresponds to an
increment in the back and/or front tensions of stress. Curve (II)
represents a decrement in the input thickness; curve (III)
corresponds to the operational condition; curve (IV) represents
an increment in the output thickness and curve (V) shows
possible increment in the friction coefficient and in the average
yield stress or a decrement in the back and/or front tensions.

The characteristic behavior of the process just mentioned will
be considered in the next sections in order to analyze quantita-
tively the neural representation and qualitatively, through sym-
bolic rules, the cold rolling process.

3. Neural representation of the cold rolling process

As mentioned, in the last years, artificial neural networks are
being proposed as powerful computational tools due to the low
computational time of processing that can be reached when the
network is in operation. These times can be of the order of some
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Fig. 1. Operational condition of a rolling mill.

Strip thickness

hundreds ps. or minors and this makes the neural network
attractive for design of on-line control and supervision systems.

In this section, a representation of the cold rolling process,
Eq. (1), through ANN, will be considered. In this case, the
Alexander’s model (Alexander, 1972) was used to generate a
database and it will be used for neural network training and
validation. The representation will consider the cylinder-material
deformation process.

3.1. Neural representation of the cylinder-material deformation
process

The set of parameters to represent the rolling process via ANN
is defined by Eq. (3).
(hi, ho, m tb, l'f, Y) Neural_Nstwork(P) (3)

The type of network considered in this work corresponds to a
multilayer perceptron, which approaches the cognitive models
that try to describe the operation of the human brain. The type of
learning applied is the supervised learning and the training
algorithm is the “back-propagation”. The neural network has tree
layers: input layer (without neurons), layer of hidden neurons
(which receives the external inputs) and layer of output
(responsible by the generation of the output of the NN, Haykin,
1999). The definition of the net structure, such as the number of
hidden layers and the number of neurons in those layers, is still a
problem without definitive solution; although there are some
approaches about it. In this work, the number of neurons for the
hidden layer is suggested as 2N+1 neurons, where N is the number
of inputs of the net, as suggested in Hecht-Nielsen (1990) and
Kovacs (1996). The practical experience shows that the rule
(2N+1) is adequate for ANN with few inputs (around 20) as that
the data set is well conditioned. For many inputs the rule is not
true. The definition of the NN structure is an art that demands the
designer’s experience. When increasing the neurons quantity in
the hidden layer, it increases the non-linear association capacity
of the NN. However, increasing this quantity excessively can lead
to an over-adjustment of the data, inclusive of noise, if this noise is

present in the training sets (overfitting). On the other hand, ANN
with few neurons in the hidden layer could not map the whole
wished data-space (underfitting).

The neural network considered has 6 inputs, where the
number of neurons in the hidden layer was chosen as 13
(2N+1). The number of neurons in the output layer was chosen
as 1, corresponding to the number of outputs of the network. The
log-sigmod function was chosen as the axon transfer function,
since it is more consistent with the biophysics of the biological
neuron.

Generally, the largest care to get a trained neural network lies
on collecting and pre-processing the data. The pre-processing
procedure consists in the data normalization in such a way that
the inputs and outputs values will be within the range of 0-1.

The following procedure was adopted to normalize the input
data before using it in the neural network structure:

(a) In order to improve the convergence of the network training
process, the normalization interval [0, 1] was reduced to [0.2,
0.8], because in the log-sigmod function, the values [0, 1] are
not reached: f—»0 for net—-—o and f— 1 for net— +oo.
Moreover, this can give the network an extrapolation capacity.
As the logarithmic scale compacts large data values more than
smaller values, when the neural network contains nodes with
sigmoidal activation function, better results can be achieved if
the data are normalized within the interval [0.2, 0.8] (Tarca
and Cooke, 2005; Altincay and Demirekler, 2002).

(b) The data were normalized through the following formula:

fa(Lo) =L,= (Lo - Lmin)/(Lmax - Lmin) (43)

fb(Ln) = Lo = LﬁLmax + (1 - Ln)*Lmin (4b)

where L, is the normalized value, L, is the value to
normalize, L, and L. are minimum and maximum values
of the parameters of the process, respectively.
(€) Liin and Li,ax were computed as follows:

Linin = (4 x Limitelnf. — LimiteSup)/3 (5a)

Lmax = (LimiteInf. — 0.8 x Ly,;,/0.2) (5b)
Egs. (5a) and (5b) are obtained substituting in the Eq. (4a)
L,=0.2 and L, = LimiteInf, and Ln= 0.8 and Lo = LimiteSup.
Where Limitelnf and LimiteSup are the minimum and maximum
values of the original data sets, respectively.

4. Theoretical fundaments for the FCANN method
4.1. Formal concept analysis—short review

In FCA, formal context is a primordial definition and it can be
represented through a cross table. In Table 1, an example of formal
context for the “numerical domain” is represented. Such a table
represents a structure that defines objects (numbers), attributes
(characteristics) and a binary relation between them.

One of the most powerful aspects in FCA is its capacity to
represent cross tables graphically. Fig. 2 is called the line diagram
or Hasse diagram (Carpineto and Romano, 2004) and represents
the example involving numbers, depicted in Table 1.

Such example has been considered here with the purpose of
showing the potential of FCA. The usage of diagrams instead of
tables is certainly more intuitive, especially for those who do not
deeply comprehend the application domain. The mathematical
concepts associated to FCA are presented as follows.
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Table 1
Example of formal context.

Objects Attributes

Even 0dd Prime
1 X
2 X X
3 X X
4 X
5 X X
6 X
7 X X
8 X
9 X

Objects (rows header) are numbers 1, 2, 3, 4, 5, 6, 7, 8 e 9. Attributes (columns
header) are characteristics even, odd and prime.

Fig. 2. Line diagram example.

4.1.1. Formal context

Formal contexts have the notation K: = (G, M, I), where G is a
set of objects (rows headers), M is a set of attributes (columns
headers) and I an incidence relation (I=G x M). If an object geG
and an attribute meM are in the relation I, this is represented by
(g, m) e I or glm and is read as “the object g has the attribute m”.

Given a set of objects A=G from a formal context K: = (G, M, I),
it could be asked which attributes from M are common to all those
objects. Similarly, it could be asked, for a set B=M, which the
objects have the attributes from B. These questions define the
derivation operators, which are formally defined as

A :={m e M|glmvg e A} (6)

B :={g e GligImVm € B} (7)

A special case of derivate sets occurs when empty sets of objects
or attributes are considered to be a derivate

AcCG=0Q0OA =M BcM=0QOB :=G (8)

4.1.2. Formal concept

Formal concepts are pairs (A, B), where A=G (called extent)
and B= M (called intent). Each element of the extent (object) has
all the elements of the intent (attributes) and, consequently, each
element of the intent is an attribute of all objects of the extent.
The set of all formal concepts in a formal context has the notation
B (G, M, I). Since a cross table representing a formal context is
given, algorithms can be applied in order to determine its formal
concepts and its line diagram (Ganter and Wille, 1996).

4.1.3. Concept lattice

When the set of all formal concepts of a formal context K: = (G,
M, I) is hierarchically ordered according to the complete reticulate
theory (Davey and Priestley, 1990; Gratzer, 1998), it is called

conceptual reticulate with the notation B (G, M, I). The formal
concepts are related as (A, B1)<(A, B2), when A; <A, and B, =By,
being (A4, B1) called sub-concept and (A,, B,) called super-concept.
For the reticulate shown in Fig. 2, the formal concept of extent
{“2"} is, for example, sub-concept of the formal concept of extent
{“4, 6, 8"}, with the attribute “Prime” distinguishing them.

4.14. Many-valued context

Even though this definition of formal contexts is valid for many
situations, mainly to represent objects that have the presence or
absence of some properties (attributes), it is not a good
representation for the major part of situations, where objects
have attributes that can take on several values. For this case,
attributes are called many-valued attributes. So, the contexts,
where the set M of attributes is composed by many-valued
attributes, are called many-valued contexts. In this case, the
notation of the formal context is given by the quadruple (G, M,
V, I), where G is a set of objects; M is a set of many-valued
attributes; V is the set of possible values by the attributes; and I is
a ternary relation between G, M and V (I=G x M x V) (Ganter and
Wille, 1996). In general, many-valued contexts can be transformed
into single-valued contexts in order to obtain the formal concepts.
A simple way to do such transformation is to replace each many-
valued attribute by the corresponding attribute-value pair, as the
example presented by Table 1. In Table 2, T represents the pair
attribute-value. Note that the number w; of attribute-value pairs
for each many-valued attribute is given by the cardinality of the
set V(i.e. |V]). It is important to remember that attributes can have
continuous values; for example, V may be equal to the set R of real
numbers. In this case, there will be as many attribute-value pairs
as the cardinality of the set ), i.e. infinity. So, for this case, it may
be interesting to choose intervals of values for attributes. This idea
of discretization will be used by the FCANN method.

4.1.5. Next closure algorithm

The Next Closure algorithm was proposed in 1984 by Bernhard
Ganter (Ganter, 2002) as an algorithm with a capacity to find
closure systems, which is equivalent to the attainment of the
formal concepts. The algorithm can be used to extract all formal
concepts or to extract the minimum set of implication rules
(Steam-Base or Duquenne-Guigues base) on a formal context
(Guigues and Duquenne, 1986). The minimal implication base,
which is non-redundant, provides a complete implication set, so
that any valid implication on a formal context can be obtained
through the combination of rules of the minimal base. The
removal of any rule of the minimal base makes it an incomplete
base. For more specific information about the Next Closure
algorithm and the Steam-Base please refer to Guigues and
Duquenne (1986), Ganter and Wille (1996) and Ganter (2002).

After the Next Closure algorithm is applied, it is possible to
obtain an implication base £, with the following characteristics:

(1) Sound: each implication in £ is valid in K: = (G, M, I).

(2) Complete: each implication pertinent of K: = (G, M, I) is in £.

Table 2
Many-valued context.

Objects Attribute # 1 Attribute # n

T;! Th T" Ton"
1 X X
2 X X
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(3) Non-redundant: no implication in £ is originated from other
implications of £.

And the base £ extracted by Next Closure algorithm has rules,
among others, of the type

if x;  I'and Xj € E,and x, € I¥ theny ¢ Ip (9)
with:
X: corresponds to a parameter or independent variable of

the considered process.

I: corresponds to a variation interval of the parameter.

Y: corresponds to a parameter or dependent variable of the
process. It normally corresponds to neural network
output.

Note that the expression Eq. (9) corresponds to the rules
without redundancy. Through these rules, it is possible to
identify parameters and their intervals that determine the
operational condition of the dependent variable. These rules can
help the identification of the parameters that can change the
operational condition, such as controllable variables, in a control
system.

4.2. FCANN for knowledge extraction from ANN

In this section, the steps of the new approach to extract
knowledge from neural networks, presented in Zarate et al.
(2008), will be presented in a summary way. The approach allows
the knowledge extraction and representation of physics processes
in a stationary state, from previously trained ANN, which satisfies
the requests of symbolic representation and easy comprehension.
The structure of the neural network corresponds to a multilayer
perceptron, feedforward, totally connected with N inputs and M
outputs (in this work M = 1). The output parameters (conse-
quents) are variables to be analyzed from the input parameters
(antecedents) through rules of the type if...then.... As follows, the
steps of the FCANN method are presented.

Step 1. Select from the process a representative data set in
order to train the ANN. It is defined as

X =[xjlmxn (10)
where: n is the number of parameters; X; to i=1,....,m and
j=1,....,n—1 are the input parameters and X;, toi = 1, ..., m is the

output parameter. The output parameter should have a known
probability distribution, such as a normal distribution N;(%, S(x)).

Step 2. Define the structure of the multilayer neural network
(with N input parameters; H hidden layers and M output) and
train it. In this work, M = 1 for any situation.

Step 3. Build a synthetic database. To extract knowledge from
the network, a synthetic database has been generated considering
the domain ranges of the input parameters. This synthetic
database will be used to operate and stimulate the trained neural
network and to obtain the output parameter (explicit relation
among parameters) trying to reveal the knowledge learnt by it.
The database is defined as

Y= [yij]pxn—l (11)

where: Y has only elements generated with the purpose of
knowledge extraction; p represents the records number and n the
parameters number. Thus, none of such elements has been
collected from the process. Each input parameter has minimal
and maximal values, which defines the domain range of each
parameter. The minimum and maximum values are vectors that

are, respectively, defined as

Inf = {uy,uz, ... Up_1} (12)
where u; = min[x;], fori=1,...,m
Sup = {v1,v2, ..., Un_1} (13)

where v; = max[x;], fori=1,...,m

The vector W defines the number of intervals that will be
generated for each parameter, between the minimum and
maximum values, Egs. (12) and (13)

W:[W]], ]:1,,“—1 (14)

Note that it is possible to consider wqy#w,# ... #W,_4
Hence, the variation interval of each parameter, which
composes the synthetic data set, is represented by the following
expression

Int = {ly,I, ..., In_1} (15)

where I; = (|vj—ujl/wj), forj=1, ...,n-1
The values of each parameter used to generate the synthetic
data set can be represented by:

S1.1 S1.2 S1,n-1

S21 S22 S$2.n-1
[S1=

sw1,1 SWZ,Z swn,l,n—l

or implicitly expressed by:

I.
slj=uj+§’, forj=1,...,n—1

S =Sk—1j+ 1, forj=1,...,n-1; k=1,...,w

It could be observed that the amount p of sets that will be
generated depends on the number of intervals of each parameter.
So p can be defined as:

n-1
p:W1XW2X...XWn,1:HWj (16)
j=1

Step 4. Present the synthetic data set Y to the network in order
to obtain the output parameter Z = [z;], . 1, which is expected to
have the same probability distribution N,(Z,S(z)) as in the real
parameter. To verify the network generalization, a comparison
between the distributions N;(X, S(x)) and N»(Z, S(z)) can be made. If
ex; = |X1 — Zz] and es(, z) = |S(x)1—5(2)2| are significant errors, this
means that the training data are not representative for the
process. Then, return to Step 1.

Step 5. Classify the parameters (columns) of the matrix U = [,
Z]p < n into intervals. As the data considered by this method have
continuous values, the better context to represent these data is
the many-valued context.

Step 6. Build a formal context cross table. The classification in
intervals of the n variables of the objects in the domain (called of
discretization), establishes a binary relationship between objects
and attributes, named incidence, where an object has or not an
attribute.

Step 7. Obtain the formal concept and build the line diagram.
The formal concepts are the ordered pairs (Object, Attribute)
obtained from the formal context.

Step 8. Apply the next closure algorithm in order to obtain the
implication rules of the type: if...then...

4.2.1. Analysis of a parameters subset through the FCANN method
During the study of a physical process, it can be necessary to

analyze the behavior of a parameters subset. Therefore, a constant

value to some parameters can be assigned while others can vary,
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allowing to analyze the qualitative behavior of the process. This
study can be done through the FCANN method adapting Steps 3
and 6 that compose the method, as presented in Dias et al. (2008).
These procedures are shown as follows:

Considering C as the set of all parameters indices that can be
assumed as constant, Steps 3 and 6 may be redefined as:

Step 3. According to Step 3, a synthetic data set [S] should be
built. To assign a constant value to a parameters subset of C, make:

IfjeCthenSy;=¢q; fork=1,...,w;

where u;<q<v;
Step 6. According to Step 6, the formal context K: = (G, M, I)
should be built. In this case, make M = M’, where:

M’ = {m;lm; e M; wherej e C and i#j}

Thus, the formal context built from a parameters subset is
reduced. This way, the line diagram and the implication base from
this new context can be more understandable for the process
analysis.

4.3. Metrics for evaluation of the rules extraction process

Intrinsically, any method for knowledge extraction and
representation from neural networks always presents some type
of error, which may be introduced by the knowledge extraction
method or by the neural network. There are two metrics for the
FCANN method, the representativeness and the fidelity, which can
be used to evaluate the process of rules extraction. These metrics
are defined as:

Considering an implication base £ and a validation set T where:

£={f1.fa ..

where each rule f; has the form “if A then B”, and where A and B are
subsets of the attributes set M.

Sfmyand T = {ty,t, ..., ty}

Definition 1. : The representativeness is defined as the capacity of
arule f; e £ to represent a tuple t; € T. If a rule f; exists, where A
and B are valid to ti, then it is said that the rule f; is able to
represent this tuple.

Definition 2. : The fidelity is defined as the level of reliability of
the implication base £. If a rule f; exists, where A is valid and B is
not valid to a tuple t;, then it is said that the rule f; failed, reducing
the fidelity.

The representativeness and the fidelity can be calculated from
Egs. (17) and (18), respectively:

R= (1 - (%)) x 100% (17)

where: R is the representativeness; NC is a non-represented data
set; and T is the tested data set.

F= (u%) x 100% (18)

where: F is the fidelity; E is the number of errors and T is the
tested data set.

It is possible to adjust levels of representativeness and fidelity of
the implication base. If the formal context K: = (G, M, S)
represents all knowledge of a neural network, so it is possible to
assume that this knowledge is represented in the line diagram
and, therefore, on canonical implication base £, where there is no
representativeness flaws. However, it is not possible to construct a
formal context that does not have flaws, because the context is
built from a discretization process generating a many-valued
context. This context causes a natural loss of its representativeness

and, therefore, a decline in the representativeness of the implica-
tion base from this new context.

The many-valued context can represent a maximum number S
of operational conditions of the process on analysis Eq. (19).
However, even building a formal context with all combinations of
the independent parameters (neural network inputs), it is not
possible to ensure that all discretization intervals of the
dependent parameter, generated by NN, are marked with an
incidence in the formal context. Thus, there may be tuples t,
which are not represented by the implication base £. This occurs
due to the fact that the Next closure algorithm, used by the FCANN
method, generates a minimal implication base, reducing the rate
of representativeness.

S=w)"! (19)

where: S represents all combinations of the independent para-
meters of a formal context; w is the number of discretization
intervals and n is the number of parameters of the neural network.
Assuming that all independent parameters have the same
discretization level, it is possible to consider: w=w;=
Wr = ... =Wy_1.

5. The FCANN method application for the cold rolling process

In this section, the application of the FCANN method for the
cold rolling process will be presented. Initially, it is necessary to
count on a database that supplies support for the neural
representation of the process. For this reason, the Alexander’s
model (Alexander, 1972) was used as a generator of the database.

5.1. Obtaining a database using Alexander’s model

To obtain the training and validation sets, the nominal
operational condition for the rolling process was defined as:

h; = 5.0 (mm)
h, = 3.6 (mm)
u=012

tr=89.22 (N/mm?)

t, = 4.325 (N/mm?)

Y = 256.325+468.187¢ %4275
Y = 460.106 (N/mm?)

P = 875310 (N/mm?)

The data for the material and the rolling mill were defined as:

S; = 250.556 (N/mm?)
Si =S, = 534.900 (N/mm?)

e E =200054(N/mm?)

e v = 0.330 Poisson’s ratio of the strip
e W =500.0(mm)

e R=292.1(mm)

e M =4903.300(N/mm)

e g =1.846(mm)

[ )

°

Considering the nominal operational condition and the typical
variations, on operational parameters suggested by Bryant et al.
(1973) (see Table 3a and b), the population size was 10° records,
where each parameter was varied in 10 intervals.

The rolling load value was obtained through the Alexander’s
model. Table 4 shows the inferior and superior limits of this
parameter.



L.E. Zarate, S.M. Dias / Engineering Applications of Artificial Intelligence 22 (2009) 718-731 725

Table 3
h; h, Jz tr ) y
a. Variation of the operational parameters
+8% +3% +20% +30% +30% +10%n
b. Variations in the rolling parameters
Limit h; (mm) h, (mm) t, (N/mm?) tr (N/mm?) u ¥ (N/mm?)
Minimum 4.60 3.492 3.030 62.458 0.096 383.869
Maximum 5.40 3.708 5.619 115.923 0.144 534.940
Increment 0.080 0.021 0.259 5.346 0.004 15.107
the best final weights for the hidden and output layers with its
Table 4 bias weights are shown as follows:
Variation of rolling load.
[1.0875 —0.6364 —-1.6868 0.0596 0.5301 —2.45557
P (N/mm?) 11067 09291 17450 02780 1.4508 —1.0157
Minimum (LimitInf) 10202.1845 49758 —1.3205 -0.4317 0.0381 -0.3250 0.5436
Maximum (LimitSup) 28737.3626
Average 17745.23 3.0246 —1.8265 4.9737 —-0.2657 —-1.0357 6.5506
Standard deviation 294234 0.1056 1.2439 —1.1441 -0.0925 0.3360 —0.4493
—0.3700 0.5878 —0.4980 0.3943 0.4255 —0.4846
5.2. Obtaining the training and validation sets W"[12936 —0.0404 -0.3537 0.4911 —0.2658 0.9934
22988 —0.1578 17001 02870 0.1085 1.7665
To obtain representative training and validation sets for the
process in Zarate and Bittencout (2002) and Zarate et al. (2006), a -05041 04494 01645 01006  0.2580  —3.7008
technique to build better-defined training sets was suggested. The 0.0451 05815 01215 0.0283 0.6825  —0.3352
technique is based in the expression Eq. (20), which has been 12870 02444 —05138 06144 —0.0496 1.1370
borrowed from the statlhstlcs area and. hgs been used in this work _03141 03506 —0.0332 07756 00829 —08123
to calculate a suitable size for the training set:
X 10.3310 —0.0094 0.4496 0.1482 0.0057 0.8093
Z sk — - - -
n— (E) a1 =1 (20) 0.1085 —2.9475
) ) ) ) ) 0.0971 1.4831
where n is the size of the sample, z is the reliance level, e is the
error around the average and fis the population proportion. Fixing 2.0488 4.2028
zin 90% (z = 1.645), fin 0.5 and e in 3%, so n~752. It is important —13.9984 7.8188
to emphasize that the value e is not the maximum error expected 1.1422 ~1.9307
for the network but for the sample. The following procedure has 0.4308 1.4457
been adopted to build the training set: : o
X ngas 0.9892 W°|[0.5915 | Wp,,[—2.5307]
1. For each variable of the network, the records containing the —7.8942 5.5544
maximum a.nd the minimum values have been ;elected. -1.0852 _2.9404
2. The operational condition of the process (i.e. the most
representative parameters in the data set) has been chosen 0.2660 —-0.7128
and added to the training set. 0.5366 0.6960
3. The remaining elements have been randomly selected, with 01827 11435
the purpose of reaching the size n of the training set.
| —0.2991 10.7147

5.3. Training and validating processes

For the training process, an error of 98 N/mm? (applied to each
itemset), with n = 752 data, N = 6 inputs (h;, h,, W, t, t; ¥), and
M = 1 output, a neural network containing 13, 2n+1, neurons in
the hidden layer has been trained. For the training process, the 10-
fold cross validation technique was used (Kohavi, 1995), random
values between —1.0 to +1.0 were considered for net weights, and
the training was carried out with the back-propagation algorithm.
After the training process, the average error Errorg,. = 13.306 and
standard deviation SD = 15.324 were obtained. The trained net-
work produced satisfactory results and, therefore, it was con-
sidered representative of the process. In Table 5, results of the
application of the cross validation technique are summarized and

5.4. Building synthetic data set and applying FCANN

The next step is to build the synthetic data set. In order to
verify the influence of the ‘number of values per parameter’ wj, for
j=1...5to be applied, the set W = {2, 3, 4, 5, 6} was chosen (see
Step 3 in Section 4.2). With W and N =6 input parameters,
different synthetic data sets with p; number of values were
generated P = {64, 729, 4096, 15625, 46656}, as specified by Eq.
(11).

After a synthetic data set has been generated, these data are
presented to the network to obtain the output parameter (i.e. P
rolling load). Thus, in order to verify the generalization capacity of
the network, the probability distributions were compared (Step 4,
Section 4.2). Table 6 shows reference values of the statistical
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Table 5
Results of applied k-fold cross validation.

Error k=1 k=2 k=3 k=4 k=5 k=6 k=17 k=28 k=9 k=10 Global
Minimum 0.114 0.156 0.118 0.21 0.128 0.034 0.748 0.154 0.061 1.048 0.034
Maximum 58.802 39.630 102.955 32.48 27.579 64.623 39.916 323.999 86.177 49.973 323.999
Average 13.897 10.498 15.664 12.163 11.42 10.874 13.961 12.9603 14.586 17.07 13.306
SD 8.84 7.712 15.31 6.292 7.118 10.588 9.151 37.847 13.412 8.326 15.324
Table 6 Table 7
Comparative analysis of the synthetic database. Attributes created according to values ranges.
Database Number of values Average Standard Parameter 1st Interval 2nd Interval

Deviation

Input thickness [4.6-5.0) [5.0-5.4]

Original 1,000,000 1819.09 300.53 Output thickness [3.492-3.6) [3.6-3.708]
2 data per parameter 64 1692.46 192.34 Friction coefficient [0.096-0.12) [0.12-0.144]
3 data per parameter 729 1692.59 208.49 Back tension [3.027-4.325) [4.325-5.62]
4 data per parameter 4096 1692.63 214.20 Front tension [62.454-89.22 ) [89.22-115.9]
5 data per parameter 15625 1692.65 216.83 Yield stress [400.88-467.91 ) [467.9-534.9]
6 data per parameter 46656 1692.67 218.25 Rolling load [10202.2-19469.7 > [19469.8-28737.4]

distribution of both original and synthetic sets. It is possible to
observe that approximately 95% of the data for the original data
set is within the range Z 4+ 25(z) of the synthetic set. Then, it is
expected that the output given by the network, for the synthetic
data, will be accurate.

As proposed by the Steps 5 and 6 in Section 4.2, the next stage
is to convert data set into a cross table similar to the one
presented in Table 2 (formal context). For such conversion, the
values of the data set have been divided from 2 to 6 ranges.
Table 7 shows an example for 2 intervals. It will be observed that
the number of intervals determines the number of extracted rules.
Each entry of data is now considered an object and the ranges
represent attributes. After the conversion of the data into a formal
context, the formal concept can be generated (see Step 7 in
Section 4.2). Finally, the Next Closure algorithm is applied in order
to extract the rules from neural network (Step 8, Section 4.2).

5.5. Rules extraction

After the application of the Next Closure algorithm, for two
intervals of discretization and 4 data per parameter, 17 rules were
obtained. It is necessary to observe that the algorithm finds the
minimum number of rules (as discussed in Section 4.1.5) which
describes the behavior of the process considered. Those rules are
presented below:

Lifu=1and Y=1thenP=1

2. ifhj=1and Y=1thenP=1
3.ifhj=1Tand u=1and ;=2 then P=1

4. ifhj=1and h,=2and u=1thenP=1

5. ifhj=2and hy=1and g =2 and ¥ =2 then P =2
6. ifhj=1and P=2then Y=2

7. ifhj=1and P=2then Y =2

8. ifhj=2and h,=1andpu=2and P=1then Y=1
9.ifY=1and P=2then h;=2 and p =2

10. if h,=1and u=2and Y=2 and P=1 then h; =1
1. ifhy=2and h,=1and Y=2and P=1then pu =1
12. if p=1and tr=2 and Y=2 and P=2 then h; =2
13. if hy= 2and p=1and Y=2 and P =2 then h; = 2
14. ifhj=1and t;= 2and Y=2and P=2 then u =2

—
[9)]

.ifhj=1and hp=2and Y=2 and P =2 then p =2
.ifhj=2and u=2and Y=2 and P =1 then h, = 2
.ifhj=1landpu=1and Y=2andP=2thenh,=1and t;=1

—_ =
N O

In Zarate (1998), it was verified that the back tension para-
meter (t,) has little influence on the cold rolling process. It is
possible to observe that this parameter is not present in any
of the 17 rules gotten for 2 intervals, confirming the previous
observation.

For automation, control and supervisory systems design in
industrial processes, it is interesting to consider rules that have
the dependent parameter as consequent of the type expressed by
Eq. (21). Five rules (1-5) satisfy that condition, and these can help
to identify which are the parameters that can change the
operational condition, like the controllable variables for a control
system.

if {independent parameters} then {dependent parameter} (21)

For 4 intervals of discretization and 4 data per parameter, 658
rules were obtained, where only 155 have the back tension
parameter. An example of those rules is shown below:

ifhpb=3and pu=1andt,=3 and t;=4 and Y=4 then P=2
ifhpb=2and p=2andt,=3 and ty=2 and Y=2 then P=2
ifhp=2and pu=2andt,=2andt;=2and Y=2then P=2
.ifhp=1and u=2and tp=1and ;=2 and Y=4 and P=2
then h; =1

5.if hhj=4and p=2and t,=2 and tr=3 and Y=3 and P=2
then h, =4

HWN =

Table 8 shows the number of rules obtained for different
intervals of discretization and the number of values per
parameter. Note that bigger the level of discretization, the more
details about the process are obtained. Therefore, rules containing
the back tension appeared. Table 9 shows the number of rules that
can be obtained containing the back tension parameter. It is
important to observe that the cold rolling process is a non-linear
process. Thus, the influence of the back tension depends on the
combined effect of the other parameters.

As the rules obtained describe the cold rolling process, some
observations about the process can be taken, in order to deeply
understand it. For example, it could be observed that when p and
Y belong to interval 1, certainly P (rolling load) belongs to interval
1 independently from the other parameters. A similar analysis can
be applied for every rule.
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Table 8
Number of rules obtained for different conditions.

Table 10
Representativeness (%) for different combinations of m and n.

Interval of discretization Number of values per parameter m N

2 3 4 5 6 2 3 4 5
2 42 24 17 6 17 2 90.96 74.734 34.193 36.237
3 57 153 120 153 125 3 92.338 91.124 60.422 68.928
4 69 220 658 607 580 4 94.471 93.405 90.255 67.786
5 39 250 814 2301 2194 5 95.343 93.927 91.68 89.752

Table 9
Number of rules with the back tension parameter.

Interval of discretization/number of values per parameter

2 3 4 5 6

2 18(42%) 12 (50%) 0 (0%) 0 (0%) 0 (0%)
3 0 (0%) 9 (6%) 19 (16%) 14 (9%) 27 (22%)
4 31(45%) 47 (21%) 155 (24%) 120 (20%) 164 (28%)
5 0 (0%) 49 (20%) 193 (24%) 727 (32%) 735 (33%)

5.6. Evaluation of the rule extraction process

In this section, the representativeness and fidelity will be used as
metrics for the evaluation of results obtained through the FCANN
method for the cold rolling mill process.

In Table 10, the representativeness of some implication bases,
built from different discretization intervals, is presented. The
discretization intervals number applied on the independent
parameters (inputs of the net) is called m and the discretization
interval number used on the dependent parameter (output of the
net) is called n. If n =1, m>1 and p = m (being p the number of
sets that will be generated by the synthetic database, depending
on the number of intervals of each parameter) then, all the
operational conditions of the process on analysis will be
represented in the formal context, and the dependent parameter
corresponding to the output parameter supplied by the network
will be always mapped in the same interval; thus, the implication
base will not present representativeness flaws.

In Table 10, it can be observed that, when m>n the
representativeness value is bigger, for m=5 and n=2 the
representativeness was of 95.343%. When m<n the output value
of the network can be attributed to an incorrect neighbor
discretization interval. This is due to neural network error, which
is considered acceptable. An extreme case can occur when m is
smaller than n. For example, for m = 1, there can be a set of
objects (formal context lines) with the same antecedent, but
several consequents eliminating the possibility of an existing
representative rule. In short, m and n are parameters to adjust the
quality and the representativity of the implication base and
should be chosen preferably as m >n. In Fig. 3, these behaviors can
be visually observed.

In order to generate all the formal context combinations, the
number of values by parameter (considering this number equal
for all input parameters w =w; = w, = ... = w;,_; of the syn-
thetic database, Section 4) must be equal to m. When w<m, the
number of objects generated will be insufficient for the produc-
tion of all possible combinations. In the other hand, if w>m, there
may be repeated objects (operational conditions), which do not
add information to the context, or there may exist objects with
equal independent parameters leading to different dependent
parameters. This was caused by the acceptable error given by the
neural network.

Representativeness (%)

Fig. 3. Representativeness for different combinations of m and n.

Acceptable error

Rolling load P

Real value

Fig. 4. Error produced by the neural network

While the low representativeness occurs by the losing of
information in the formal context, the failure on the fidelity will
occur when the output of the neural network presents a value
within the acceptable error. This error can produce an incorrect
classification of the value, making a rule to become failed (see
Fig. 4). Still in Fig. 4, it is possible to observe that the acceptable
error of the neural network oscillates between two adjacent
intervals produced by the discretization process. This way, the
value supplied by the network can be represented in the interval
I or Is.

As in the representativeness, the fidelity can be controlled
adjusting the discretization level of the independent and
dependent parameters. Again, if m>1 and n =1, then all the
rules will not present fidelity failures, because in this case there
will be only one possible element in the {consequent) set.

In Table 11, the fidelity of some implication bases, built from
different discretization number intervals, are presented. Note that
the optimum values are found when m is bigger than n. Therefore,
it is important to observe in Table 11 that the best fidelity value
was obtained to m = 2 and n = 4. This occurred because, for this
same combination, the representativeness presented a much lower
value (Table 10). So a smaller amount of rules was used and,
consequently, the fidelity of the implication base was better.
However, as in the representativeness, where m and n are
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Table 11
Fidelity (%) for different combinations of m and n.

m N

2 3 4 5
2 85.773 87.965 98.713 97.537
3 91.224 86.734 92.648 93.152
4 93.674 90.800 87.125 87.985
5 94.975 92.912 89.953 87.731

Fidelity (%)

Fig. 5. Fidelity for each combination of m and n.

adjustment parameters of the fidelity of the implication base,
these values should be preferably chosen as m>n. In Fig. 5, this
behavior is observed and it is possible to note which regions have
the best fidelity indices.

It is necessary to highlight that, although the representativeness
and the fidelity are apparently similar metrics, there are intrinsic
differences between them. In summary, when the representative-
ness fails, it means that for a specific tuple of the test base, there
does not exist any rule in the implication base with a valid
antecedent that attends it. On the other hand, the failure in the
fidelity occurs if, for the tuple in analysis, there is a rule that
attends it; that is, the rule antecedent is valid, although its
consequent is not.

A second important point refers to the usage of a synthetic
database. When using this base, the goal is to explore the
generalization characteristic of the neural network, trying to
extract learned relations and information during its training
process. The usage of a synthetic database permits the FCANN
method to introduce a metric of amplitude (Zarate et al., 2008),
which refers to the capacity of incrementing the synthetic data set
size, cases or operational conditions, which can be considered for
rule extraction. However, this characteristic should be explored
together with the discretization level used in the independent and
dependent parameters, avoiding the appearing of repeated
objects, i.e. of redundant operational conditions.

Other important points to be highlighted are that the number
of values per parameter to generate the synthetic database, and
the number of discretization intervals determine the cardinality of
the implication base £ and the number of formal concepts of the
line diagram. An increment in the number of parameters and in
the discretization level can drastically increase the number of
rules and the line diagram density, what would make difficult the
comprehension of the extracted knowledge.

5.7. Mapping of the qualitative rules on load-curve

The FCANN method is able to extract and represent the learned
physical behavior by neural networks. In Section 2, the behavior of
the cold rolling process was discussed and, in this section, this
behavior will be confirmed through the FCANN method. In this
analysis, the rolling load behavior P, regarding the output
thickness variation h,, will be verified. The other parameters will
be fixed in a constant value (Table 12), as proposed in Section 4.2.

Applying average values in the input thickness h;, back tension
tp, front tension tj, friction coefficient p and in the average yield
stress Y (Table 12), and using the same discretization level in the
independent and dependent parameters, m = n = 15, it is possible
to observe the relation of the rolling load P regarding the output
thickness h, through the line diagram (Fig. 6). In the diagram, two
groups of formal concepts are observed (representing different
operational conditions of the process): the left group, which
presents a superior rolling load (P) value, is associated with the
smaller output thickness (h,) values; the right group, which
presents an inferior rolling load (P) value, is associated with the
biggest output thickness (h,) values. This behavior is expected for
this type of process and it permits to clearly observe the
qualitative behavior of variables analyzed.

In addition to the line diagram analysis, another possibility to
obtain the behavior of the cold rolling process is through the
implication base £. Again, fixing the same discretization level in
the independent and dependent parameters (m =n = 15) and
analyzing the rolling load P and the output thickness h, behaviors,
for different friction coefficient values u (Table 12), it is possible to
build the characteristic load-curve (Fig. 1).

In Fig. 7, the behavior of the rolling load P for variations of
+20% over the nominal value of the friction coefficient p is
presented. The ordinate axis represents the 15 possible discretiza-
tion intervals of rolling load and the abscissa axis represents the
output thickness values h,, for the same input thickness value h;.
For a minimum friction coefficient value L, the load-curve stays
under the nominal load-curve, as discussed in Section 2 (Fig. 1).
For this case, all the rolling load values were mapped into the
intervals 5 and 6. For an average friction coefficient value y, the
curve was mapped into the intervals 6 and 7. For the increase in
the friction coefficient value, the load-curve stays above the
nominal curve as expected, and all the rules were mapped into the
intervals 7-9.

The friction coefficient variation produces an alteration in the
rolling load characteristic values and this behavior was mapped
by the FCANN method through the implication base. It is
necessary to highlight that for the values of m =n<10, this
behavior cannot be noticed, since the discretization intervals
cannot attend the rolling load variation.

Again m and n are adjustment parameters that permit to better
explore the qualitative behavior of the process, besides controlling
the representativeness and the fidelity.

Table 12
Constant values attributed during the analysis.

Average
Input thickness h;(mm) 5
Back tension t,(N/mm?) 43245
Front tension ¢ (N/mm?) 89.1905
Yield stress ¥ (N/mm?) 459.4045
Average Minimum Maximum
Friction coefficient u 0.12 0.096 0.144
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Fig. 6. Line diagram for analysis of the rolling load P and output thickness h,.

The capacity of the FCANN method to represent the qualitative
behavior of a process is very relevant. This characteristic can be
used to understand processes without the necessity of complex
mathematical models. The data can be collected directly from the
process in the study to model the neural network and, afterwards,
apply the FCANN method. A qualitative representation from the
implication base and the graphic representation through the line
diagram, what describes in a comprehensible form the process in
study, are obtained.

6. Conclusions

In this work, the new approach denominated FCANN for
knowledge extraction and representation from previously trained
neural networks has been applied in the cold rolling process. The
new approach uses the fundaments of the formal concept analysis
to represent the behavior of the process being studied in a
symbolic and qualitative form.

The results show that the neural representation of the rolling
process is satisfactory and that the FCANN method is able to
represent the qualitative behavior of the process. With the FCANN
method, it was possible to analyze the rolling process through the
line diagram and the implication base. Analyzing the line diagram
for this case study, two groups of rolling load and their respective
output thickness values were observed, showing the process
behavior. Through the implication base, it was possible to build
the characteristic load-curve for different friction coefficient
values.

The reconstruction of the load-curve was possible due to the
alterations proposed in some stages of the FCANN method,
initially proposed in Dias et al. (2008). These alterations permit
to analyze the behavior of specific parameters of a process, fixing
the others. This way, it is possible to describe the physical
behavior of the process whose analysis result can be useful for the

learning process of the phenomenon in study. The FCANN method
can be used to understand processes without the necessity of
complex mathematical models. From a set of collected data, it is
possible to train a neural network, apply the FCANN method and
use the results to bear an intelligent system for on-line control
and supervision.

Two metrics, the representativeness and the fidelity, were
presented with the objective to evaluate the quality of the
extracted rules. The best values of fidelity and representativeness
were obtained when the dependent parameter (neural network
output) has a smaller quantity of discretization intervals than the
independent parameters (neural network inputs). However, it is
important to notice that the quality of the rules obtained through
the FCANN method also depends on the synthetic data set
generated and on the neural network, which is responsible for
the representation of the real process. The FCANN method is not
capable of presenting good results when the neural network does
not represent properly the process in analysis.

The synthetic database, as well as the neural network, should
be representative of the process in analysis. Moreover, this
database, together with the discretization level of the indepen-
dent and dependent parameters, can be used as a precision
control mechanism and the quantity of extracted rules.

It is important to note that the FCANN approach extracts
relations among the parameters involved in the neural represen-
tation, independently of considering uniquely as antecedent the
network inputs and as consequent its output. This means that
FCANN tries to show the qualitative relations learned by the
network, independently of its input-output structure. Notice that
FCANN looks for a minimum implications base from which other
implication rules can be deduced. FCANN produces qualitative
behavior rules where the dependent parameters of the process
can or cannot be the consequent variables of the rules extracted.
This can be useful in industrial processes for automation, control
and design of supervisory systems, where it is important to
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Fig. 7. Behavior of the rolling load P for variations of +20% friction coefficient
nominal value.

consider rules that have the dependent parameters as consequent.
This can help to identify which parameters can change the
operational condition, such as the controllable variables for a
control system.
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