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2Pontifı́cia Universidade Católica de Minas Gerais (PUC MG)
Belo Horizonte – MG – Brasil

3Universidade de São Paulo (USP)
São Carlos – SP – Brasil

mariano@dcc.ufmg.br, zarate@pucminas.br, brunomn@icmc.usp.br

Resumo. Uma vez que o conhecimento adquirido por Redes Neurais Artifici-
ais não é trivialmente compreensı́vel pelos humanos, diversas iniciativas têm
surgido para extrair conhecimento destas redes. Neste trabalho, destaca-se o
método FCANN, o qual utiliza Análise Formal de Conceitos para extrair e re-
presentar conhecimento interpretável das redes neurais. Entretanto, a extração
de regras neste método apresenta um alto custo computacional e, muitas vezes,
apresenta regras cuja interpretabilidade seja difı́cil. Assim sendo, este traba-
lho propõe a extração de regras de implicação de reticulados conceituais cons-
truı́dos a partir de itemsets frequentes, aumentando a escalabilidade do método
e a clareza das regras para o usuário. Essa nova proposta foi aplicada a um
sistema de energia solar (termossifão), obtendo bons resultados.

1. Introdução
Redes Neurais Artificiais (RNAs) têm sido muito utilizadas para a representação de pro-
cessos reais complexos, especialmente industriais. Estas redes possuem a capacidade de
obter relações entre os parâmetros de entrada e saı́da de um domı́nio, nas quais parâmetros
de entrada são mapeados em parâmetros de saı́da da rede por uma função implı́cita. Este
comportamento torna as RNAs uma “caixa preta” e nenhuma informação pode ser expli-
citamente obtida de sua estrutura interna.

Diversas pesquisas são encontradas na busca de extrair conhecimento de RNAs,
como, por exemplo, [Tickle et al. 1998],[Benı́tez et al. 1997] e [Craven 1996] Recen-
temente, a Análise Formal de Conceitos (AFC), uma poderosa ferramenta para
representação de conhecimento, vem sendo utilizada com sucesso para extrair conhe-
cimento de RNAs previamente treinadas [Vimieiro et al. 2005].

Dentre os métodos que utilizam a AFC para extração de conhecimento de redes
neurais, destaca-se, aqui, o método FCANN [Zárate et al. 2008], o qual extrai relações
qualitativas aprendidas pela RNA, independente de sua estrutura, obtendo bons resultados
em diversos domı́nios de aplicação [Zárate and Dias 2009]. Este método aplica o algo-
ritmo Next Closure [Ganter and Stumme 2003] para a obtenção de regras de implicação



do tipo “SE ... ENTÃO” a partir de uma base canônica não redundante ou mı́nima, deno-
minada Stem Base ou Duquenne-Guigues Base. Entretanto, a obtenção dessa base mı́nima
não é trivial, sendo pouco encontrada em casos práticos [Godin et al. 1986] e com custo
computacional proibitivo para muitas aplicações [Carpineto and Romano 2004].

Além da questão computacional outros problemas são observados. Não existe
uma relação direta entre o conjunto mı́nimo de regras (stem base) e o reticulado concei-
tual, o que pode dificultar uma posterior análise dessas regras. Frequentemente, também
é observado uma grande quantidade de regras e conceitos formais, o que dificulta sua
análise visual. Outro problema é a dificuldade de derivar logicamente o conjunto mı́nimo
de regras utilizando axiomas para inferir novas regras[Carpineto and Romano 2004].

Assim, esse trabalho aborda os dois principais problemas observados no método
FCANN: 1) a dificuldade de extrair um grande conjunto de conceitos formais e regras, e 2)
a dificuldade de análise do conhecimento obtido através do conjunto mı́nimo de regras e
do reticulado conceitual. Para o primeiro problema, propõe-se a construção do reticulado
conceitual usando itemsets frequentes (reticulados Iceberg [Stumme et al. 2002]), o qual
provê um limiar no número de conceitos formais. Já para o segundo problema, extraem-se
regras de implicação do reticulado conceitual.

Este artigo está dividido da seguinte maneira: na Seção 2, são apresentados al-
guns conceitos primordiais para o entendimento deste trabalho. Na Seção 3, apresenta-se
o método FCANN. Na Seção 4, as melhorias do método FCANN aqui propostas são
mostradas, seguida por um estudo de caso apresentado na Seção 5. Por fim, algumas
conclusões sobre este trabalho são apresentadas na Seção 6.

2. Conceitos Iniciais: Análise Formal de Conceitos e Algoritmo Next Closure
Nesta seção, são apresentados dois conceitos essenciais para o total entendimento deste
trabalho: a Análise Formal de Conceitos e o Algoritmo Next Closure.

2.1. Análise Formal de Conceitos

A Análise Formal de Conceitos (AFC) [Ganter and Wille 1999] é um método matemático
voltado para a representação de conhecimento por meio de diagramas de linha, os quais
são representações de um reticulado conceitual. O conceito inicial de AFC se refere aos
contextos formais. Estes são representados por tabelas cruzadas e possuem a notação
(G,M, I), na qual G é um conjunto de objetos (linhas da tabela), M é um conjunto de
atributos (colunas) e I é a relação de incidência (I ⊆ G ×M). Se um objeto g ∈ G possui
um atributo m ∈M , estes estão na relação I, representando-se por gIm ou (g,m) ∈ I.

Dado um conjunto de objetos A ⊆ G de um contexto formal (G,M, I), pode-se
obter os atributos de M que são comum a todos os objetos. Da mesma forma, pode-se
obter, para um conjunto B ⊆M , quais objetos possuem os atributos de B. Estas operações
são possı́veis usando os operadores de derivação, mostrados na Equação 1.

A′ = { m ∈ M | gIm g ∈ A } B′ = { g ∈ G | gIm m ∈ B } (1)

Diversos algoritmos podem ser aplicados a contextos formais (tabelas cruzadas) para ob-
ter seus conceitos formais e seus diagramas de linha. Conceitos formais são pares (A,B),
nos quais A ∈ G é denominado extensão e B ∈ M intenção. Quando o conjunto de todos



os conceitos formais de um contexto formal (G,M, I) é ordenado hierarquicamente, este
conjunto é denominado Reticulado Conceitual, com a notação β(G,M, I). Dois conceitos
formais possuem a relação hierárquica (A1, B1) ≤ (A2, B2) quando A1 ⊆ A2 e B2 ⊆ B1.

2.2. Algoritmo Next Closure

Sistemas de fechamento (closure systems) são, de maneira simples, conjuntos de conjun-
tos. Na Equação 2, apresenta-se um sistema de fechamento C dado um conjunto M :.

C ⊆ =(M),M ∈ C,D ⊆ C → ∩D ∈ C (2)

na qual =(M) é o conjunto potência do conjunto M e ∩D ← {x|∀S ∈ D,x ∈ S}

Operadores de derivação da AFC podem ser considerados, por suas caracterı́sticas,
como operadores de fechamento [Vimieiro et al. 2005]. Assim, dois conjuntos são consi-
derados fechados se B′′ = B,B ⊆M .

Como um conjunto de subconjuntos de um conjunto tem cardinalidade exponen-
cial (2n subconjuntos), o desenvolvimento de algoritmos que verificam se um fechamento
já foi gerado resulta em um algoritmo de complexidade exponencial. Assim, é necessário
gerar fechamentos em uma ordem predefinida para evitar essa verificação, a qual é a ideia
principal do algoritmo Next Closure [Ganter and Stumme 2003]. Considerando A ⊆ M e
mi ∈M , os passos deste algoritmo podem ser resumidos da seguinte forma:

1. Remova, de A, todos os elementos maiores que mi(A ∩ {m1, ...,mi−1});
2. Una o conjunto de resultado do passo 1 ao conjunto {mi};
3. Aplique o operador de fechamento (.)′′ ao conjunto resultante do passo 2.

3. Método FCANN para Extração de Conhecimento de RNAs
Nesta seção, os passos do método FCANN para extração de conhecimento de RNAs pre-
viamente treinadas é discutido brevemente. Assume-se, aqui, uma rede neural perceptron
em múltiplas camadas, feedforward, totalmente conectada, com n entradas e m = 1 saı́da.

1. Selecione um conjunto representativo de dados para treinar a rede (Equação 3):

X = [xij ]k× n (3)

no qual xij para i = 1, ...., k e j = 1, ..., n− 1 são os parâmetros de entrada e xin para
i = 1, ..., k a saı́da, a qual deve ter a distribuição de probabilidade conhecida.

2. Defina a estrutura da RNA, com n entradas, h camadas e m saı́das, e treine-a.
3. Construa uma base de dados sintética, considerando os limites dos domı́nios dos

parâmetros de entrada. A base de dados sintética é construı́da para operar a rede
neural treinada e obter os valores do parâmetro de saı́da, tentando revelar o conhe-
cimento adquirido. Esta base pode ser definido conforme a Equação 4:

Y = [yij ]p×n−1 (4)

na qual Y possui elementos gerados e p representa o número de registros (Equação
7). Cada parâmetro de entrada possui valores mı́nimos e máximos conhecidos. O
vetor W (Equação 5) define o número de intervalos que vai ser gerado para cada
parâmetro, entre os valores mı́nimos e máximos:



W = [Wj ]; j = 1, ...,n− 1 (5)

Assim, o intervalo de variação de cada parâmetro na composição da base sintética
pode ser expresso conforme a Equação 6:

Int = {I1, I2, ..., In−1} onde Ij =
|vj − uj |

wi
for j = 1, ...,n− 1 (6)

Os valores de cada parâmetro usados para gerar a base de dados sintética podem
ser representados por:

S =


S1,1 S1,2 · · · S1,n−1

S2,1 S2,2 · · · S2,n−1
...

... . . . ...
Sw1,1 Sw2,2 · · · Swn−1,n−1


Pode-se observar que o número de conjuntos p a serem gerados depende do
número de dados para cada parâmetro, tal como na Equação 7

p = W1 ×W2×, ...,×Wn−1 =
n−1∏
i=1

Wi (7)

4. Apresente a base sintética Y à rede para obter o parâmetro de saı́da Z = [zij]p×1,
p qual tem de possuir a mesma função de probabilidade já conhecida. Se ex,z

=|x1 − z2| e eS(x,z) = |S(x)1 − S(z)2| representarem grandes erros, volte ao passo 1.
5. Classifique os parâmetros da matriz U = [Y,Z]p×n em intervalos discretos.
6. Construa uma tabela cruzada do contexto formal para discretizar as n variáveis,

estabelecendo uma relação binária de incidência entre objetos e atributos.
7. Obtenha o conceito formal e construa seu diagrama de linha.
8. Aplique o algoritmo Next Closure a fim de obter o conjunto de regras denominado

Duquenne-Guigues Base, composto por regras do tipo “SE ... ENTÃO”.

4. Melhorias Propostas para o Modelo FCANN
Nesta seção, são apresentadas as melhorias adotadas a fim de suprir os problemas detec-
tados no método FCANN. O primeiro problema detectado remete-se à escalabilidade do
método, o qual define um contexto formal (G,M, I), no qual |M | =

∑n+m
i Di, |G| = p, n+m

é o número de parâmetros (entrada e saı́da) da RNA e Di é o intervalo de discretização
utilizado em cada parâmetro. O segundo problema detectado é a falta de correlação direta
entre as regras extraı́das e o reticulado conceitual, dificultando a análise do conhecimento
obtido por meio do conjunto mı́nimos de regras e do reticulado.

Para resolver o primeiro problema, propõe-se a adoção associações entre item-
sets frequentes e conceitos formais frequentes [Stumme et al. 2002]. Reticulados concei-
tuais construı́dos apenas com conceitos formais frequentes são conhecidos na literatura
como reticulados conceituais Iceberg [Stumme et al. 2002]. Considerando um conceito
formal (X,Y ), o conjunto Y ⊆ M (e (X,Y )) será frequente se, e somente se, |Y | > minSup

[Carpineto and Romano 2004], no qual minSup é um limite de suporte mı́nimo.

Como a frequência de cada atributo mi ∈ Y é fixa, adota-se um peso adicio-
nal para estes atributos, o qual corresponde à frequência de mi em um contexto formal



construı́do com o conjunto de dados original. Para tal, utilizam-se os mesmos inter-
valos de discretização utilizados no passo 5 do FCANN. Assim, considera-se um con-
ceito formal (X,Y ) frequente se, e somente se, os conceitos formais são frequentes e
(|Y | + weight(mi)) > minSup. É importante observar que itemsets e conceitos frequentes
são bastante correlacionados. O suporte de qualquer itemset Y é igual ao suporte de seu
fechamento Y ′′, o que garante que quaisquer itemsets frequentes são unicamente determi-
nados por conceitos frequentes [Stumme et al. 2002].

O segundo problema, referente à falta de correlação direta entre as regras extraı́das
e o reticulado conceitual, é aqui abordado utilizando regras de implicação diretamente do
reticulado conceitual. Uma regra de implicação A → B pertence a um contexto formal
(G,M, I) se, e somente se, (B′, B′′) ≥ (A′, A′′) [Carpineto and Romano 2004]. Entretanto,
o conjunto de regras extraı́do pode ser redundante [Maier 1983]. Essas redundâncias,
entretanto, podem ser removidas em tempo polinomial [Carpineto and Romano 2004].

Para gerar todos os conceitos formais frequentes e extrair regras de implicação,
pode-se utilizar a ferramenta Sophiann [Zárate et al. 2006b], bem como os algoritmos
Frequent Next Neighbors e Find Implications [Carpineto and Romano 2004].

5. Estudo de Caso
Nesta seção, é apresentado um estudo de caso de extração de regras de um sistema
real utilizando o método FCANN modificado. Para tal, escolheu-se o sistema termos-
sifão [Zárate et al. 2006a], o sistema mais utilizado de aquecimento solar de água. Sua
eficiência é influenciada por parâmetros operacionais e de instalação. A extração de co-
nhecimento aqui visa compreender o comportamento desses parâmetros.

5.1. Representação Neural

Temperatura de entrada da água (Tin), irradiação solar (G), temperatura do ambiente
(Tamb), taxa de fluxo (m̄), inclinação do coletor solar (I) e altura do tanque de armaze-
namento de água (H) são variáveis utilizadas como entradas da rede neural. Todas essas
variáveis são mapeadas na temperatura de saı́da da água (Tout), conforme a Equação 8:

f(Tin,G,Tamb,m, I,H) RNA→ (Tout) (8)

Utilizou-se uma rede neural do tipo perceptron em múltiplas camadas (MLP),
feedforward, uma camada intermediária e com neurônios de camadas consecutivas total-
mente conectados. Para o treinamento, utilizou-se o algoritmo backpropagation, com
função log-sigmoide de ativação nos neurônios. Como sugerido em [Kovács 1996],
utilizou-se 2N + 1 neurônios na camada intermediária, na qual N é o número de entra-
das da rede neural. Portanto, a estrutura da rede possui N = 6 neurônios na camada de
entrada, 13 neurônios na camada intermediária e M = 1 neurônio na camada de saı́da.

Para o processo de treinamento, 117 instâncias foram coletadas do sistema, sendo
90% utilizadas no conjunto de treinamento, que continha as instâncias com os valores
máximos e mı́nimos de cada parâmetro e outras escolhidas aleatoriamente. Os dados
foram normalizados no intervalo [0.2, 0.8] para facilitar a convergência da rede neural,
como sugerido em [Altincay and Demirekler 2002] e mostrado na Equação 9, na qual Ln
é o valor normalizado, Lo o original e Lmin e Lmax o mı́nimo e o máximo do parâmetro.



Ln =
(Lo− Lmin)

(Lmax− Lmin)
e Lo = Ln ∗ Lmax+ (1− Ln) ∗ Lmin (9)

Para sistemas de termossifão, o máximo erro médio na saı́da (Tout) recomendado
é de 1oC, sendo este o critério adotado para parada do treinamento da RNA. Na Tabela 1,
é possı́vel observar os valores de erro obtidos tanto no treinamento quanto no teste.

Tabela 1. Resultados de treinamento e teste da rede neural
Erro (◦C) Treinamento Teste
Mı́nimo 0.01 0.16
Máximo 1 3.38
Média 0.32 0.99

Desvio Padrão 0.18 1.15

5.2. Extração de Conhecimento Utilizando o Método FCANN Modificado

Após o treinamento satisfatório da rede neural, passa-se à aplicação do método FCANN
modificado. Para fins de comparação da eficiência, a configuração original do método
FCANN também foi aplicada à rede neural. Na Tabela 2 é possı́vel observar o número
de objetos, atributos, conceitos e regras (Stem Base) obtidas em relação ao número de va-
lores por parâmetro e intervalos de discretização utilizando o FCANN original. Pode-se
observar que a partir de 6 valores por parâmetros e intervalos de discretização, não foi
possı́vel obter regras devido ao custo computacional. Além disso, é possı́vel perceber que
o número de conceitos e regras cresce rapidamente, inviabilizando a correta aprendiza-
gem. Com isso, mostra-se uma necessidade de adoção de valores limiares, podando o
reticulado conceitual e extraindo regras apenas de conceitos formais mais relevantes.

Tabela 2. Número de objetos, atributos, conceitos e regras obtidos

Dados por parâmetro e intervalos de discretização
2 3 4 5 6 7 8

Objetos |G| 64 729 4096 15625 46656 117649 262144
Atributos |M | 14 21 28 35 42 49 56

Número de conceitos 1084 8174 34396 109205 282829 643944 1303887
Número de regras 80 1039 5667 22266 - - -

Adotando as modificações, aplicou-se um limiar de suporte mı́nimo ao contexto
formal. Ao incrementar o suporte mı́nimo, o número de regras decresce, filtrando apenas
os conceitos formais mais relevantes e, consequentemente, as regras de implicação mais
relevantes. A Figura 1 mostra, em escala logarı́tmica, esta relação.

Com isso, consegue-se um compromisso entre o suporte mı́nimo, a qualidade das
regras e, consequentemente, do conhecimento extraı́do. Além disso, é possı́vel aumentar
a escalabilidade do método FCANN. Em relação ao conjunto de regras extraı́das, apesar
de este não ser um conjunto mı́nimo, completo e não-redundante, este pode ser facilmente
analisado pelo usuário. Além disso, apresenta regras mais representativas, uma vez que
foram extraı́das apenas dos conceitos formais mais relevantes. Outro ganho remete-se à
possibilidade da análise das regras diretamente do reticulado conceitual.



Figura 1. Relação entre números de conceitos formais, regras e suporte mı́nimo

Para o contexto formal deste exemplo, 18 regras de implicação foram obtidas,
adotando um suporte mı́nimo de 50%. Foram obtidas, por exemplo, as seguintes regras:

If G= 8 Then I= 3 If M= 3 Then I= 3 If G= 8 Then H= 8
If M= 3 Then H= 8 If G= 8 Then H= 3 If M= 3 Then H= 3

No reticulado conceitual Iceberg gerado para este exemplo, não mostrado aqui por
limitações de espaço, somente os conceitos formais mais representativos estão presentes,
existindo uma relação direta entre as regras e o reticulado. Além das 18 regras obtidas,
outras podem ser inferidas por implicações lógicas ou por análise visual do reticulado.

6. Conclusões

Neste trabalho, adaptou-se o método FCANN para dar-lhe maior escalabilidade e extrair
regras mais compreensı́veis. Foi possı́vel, com essas modificações, reduzir a comple-
xidade do reticulado conceitual com a associação entre itemsets frequentes e conceitos
formais frequentes, propondo-se, assim, a representação do conhecimento extraı́do das
redes neurais por meio do reticulado conceitual Iceberg. Utilizando um suporte mı́nimo,
foi possı́vel selecionar os conceitos formais frequentes, obtendo um compromisso entre o
conhecimento extraı́do, a representatividade das regras e o suporte mı́nimo.

Ao utilizar o reticulado conceitual Iceberg, apenas conceitos formais mais relevan-
tes são representados, o que possibilita, em muitos casos, a visualização do reticulado. A
visualização do reticulado é adequada para processos de aprendizagem no qual o usuário
procura compreender algum processo através do método FCANN. Outra vantagem da
visualização do reticulado é permitir facilmente a inferência de novas regras.

Utilizou-se, também, a extração de regras de implicação diretamente do reticulado
conceitual. Essa extração, quando comparada com a extração do conjunto mı́nimo de re-
gras, apresenta algumas vantagens. Extrai-se uma quantidade menor de regras, apenas
as mais relevantes são selecionadas e existe uma relação direta entre as regras e o reti-
culado conceitual, facilitando a aprendizagem. Entretanto, o conjunto de implicações é
redundante, podendo essas redundâncias serem eliminadas em tempo polinomial.

Por fim, é importante destacar que as mudanças propostas para o método FCANN
podem ser adotadas por outros métodos para reduzir a complexidade do reticulado con-
ceitual. Além disso, é possı́vel adotar outros paradigmas de construção de reticulados.
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