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Resumo. Uma vez que o conhecimento adquirido por Redes Neurais Artifici-
ais ndo é trivialmente compreensivel pelos humanos, diversas iniciativas tém
surgido para extrair conhecimento destas redes. Neste trabalho, destaca-se o
método FCANN, o qual utiliza Andlise Formal de Conceitos para extrair e re-
presentar conhecimento interpretdvel das redes neurais. Entretanto, a extragdo
de regras neste método apresenta um alto custo computacional e, muitas vezes,
apresenta regras cuja interpretabilidade seja dificil. Assim sendo, este traba-
lho propde a extracdo de regras de implicacdo de reticulados conceituais cons-
truidos a partir de itemsets frequentes, aumentando a escalabilidade do método
e a clareza das regras para o usudrio. Essa nova proposta foi aplicada a um
sistema de energia solar (termossifdo), obtendo bons resultados.

1. Introducao

Redes Neurais Artificiais (RNAs) tém sido muito utilizadas para a representacdo de pro-
cessos reais complexos, especialmente industriais. Estas redes possuem a capacidade de
obter relagdes entre os parametros de entrada e saida de um dominio, nas quais parametros
de entrada sdo mapeados em parametros de saida da rede por uma fun¢ao implicita. Este
comportamento torna as RNAs uma “caixa preta” e nenhuma informagdo pode ser expli-
citamente obtida de sua estrutura interna.

Diversas pesquisas sao encontradas na busca de extrair conhecimento de RNAs,
como, por exemplo, [Tickle et al. 1998],[Benitez et al. 1997] e [Craven 1996] Recen-
temente, a Andlise Formal de Conceitos (AFC), uma poderosa ferramenta para
representacdo de conhecimento, vem sendo utilizada com sucesso para extrair conhe-
cimento de RNAs previamente treinadas [Vimieiro et al. 2005].

Dentre os métodos que utilizam a AFC para extracao de conhecimento de redes
neurais, destaca-se, aqui, 0 método FCANN [Zarate et al. 2008], o qual extrai relagdes
qualitativas aprendidas pela RNA, independente de sua estrutura, obtendo bons resultados
em diversos dominios de aplicagdo [Zarate and Dias 2009]. Este método aplica o algo-
ritmo Next Closure [Ganter and Stumme 2003] para a obtencao de regras de implicacio



do tipo “SE ... ENTAO” a partir de uma base candnica nio redundante ou minima, deno-
minada Stem Base ou Duquenne-Guigues Base. Entretanto, a obtencao dessa base minima
nao € trivial, sendo pouco encontrada em casos praticos [Godin et al. 1986] e com custo
computacional proibitivo para muitas aplicacdes [Carpineto and Romano 2004].

Além da questao computacional outros problemas sdo observados. Nao existe
uma relacdo direta entre o conjunto minimo de regras (stem base) e o reticulado concei-
tual, o que pode dificultar uma posterior anélise dessas regras. Frequentemente, também
€ observado uma grande quantidade de regras e conceitos formais, o que dificulta sua
andlise visual. Outro problema € a dificuldade de derivar logicamente o conjunto minimo
de regras utilizando axiomas para inferir novas regras[Carpineto and Romano 2004].

Assim, esse trabalho aborda os dois principais problemas observados no método
FCANN: 1) a dificuldade de extrair um grande conjunto de conceitos formais e regras, e 2)
a dificuldade de andlise do conhecimento obtido através do conjunto minimo de regras e
do reticulado conceitual. Para o primeiro problema, propde-se a constru¢do do reticulado
conceitual usando itemsets frequentes (reticulados Iceberg [Stumme et al. 2002]), o qual
prové um limiar no numero de conceitos formais. J4 para o segundo problema, extraem-se
regras de implicagd@o do reticulado conceitual.

Este artigo estd dividido da seguinte maneira: na Secdo 2, sdo apresentados al-
guns conceitos primordiais para o entendimento deste trabalho. Na Secdo 3, apresenta-se
o método FCANN. Na Secdo 4, as melhorias do método FCANN aqui propostas sdao
mostradas, seguida por um estudo de caso apresentado na Secdo 5. Por fim, algumas
conclusdes sobre este trabalho sdo apresentadas na Secédo 6.

2. Conceitos Iniciais: Analise Formal de Conceitos e Algoritmo Next Closure

Nesta secdo, sdo apresentados dois conceitos essenciais para o total entendimento deste
trabalho: a Anélise Formal de Conceitos e o Algoritmo Next Closure.

2.1. Analise Formal de Conceitos

A Analise Formal de Conceitos (AFC) [Ganter and Wille 1999] é um método matematico
voltado para a representacdo de conhecimento por meio de diagramas de linha, os quais
sdo representacdes de um reticulado conceitual. O conceito inicial de AFC se refere aos
contextos formais. Estes sdo representados por tabelas cruzadas e possuem a notacdao
(G,M,I), na qual G € um conjunto de objetos (linhas da tabela), M € um conjunto de
atributos (colunas) e I € a relacdo de incidéncia (I C G x M). Se um objeto g € G possui
um atributo m € M, estes estdo na relagdo I, representando-se por gIm ou (g,m) € I.

Dado um conjunto de objetos A C G de um contexto formal (G, M, I), pode-se
obter os atributos de M que s@o comum a todos os objetos. Da mesma forma, pode-se
obter, para um conjunto B C M, quais objetos possuem os atributos de B. Estas operacoes
sdo possiveis usando os operadores de derivagdo, mostrados na Equacao 1.

A={meM|gingecA} B={geG|glmme B} (1)

Diversos algoritmos podem ser aplicados a contextos formais (tabelas cruzadas) para ob-
ter seus conceitos formais e seus diagramas de linha. Conceitos formais sdo pares (4, B),
nos quais A € G € denominado extensao e B € M intencdo. Quando o conjunto de todos



os conceitos formais de um contexto formal (G, M, I) € ordenado hierarquicamente, este
conjunto € denominado Reticulado Conceitual, com a notagdo (G, M, I). Dois conceitos
formais possuem a relagdo hierdrquica (A1, By) < (Az, By) quando A; C Ay € By C By.

2.2. Algoritmo Next Closure

Sistemas de fechamento (closure systems) sdo, de maneira simples, conjuntos de conjun-
tos. Na Equacao 2, apresenta-se um sistema de fechamento C dado um conjunto M:.

CCIM),MeC,DCC—-nNDeC 2)
na qual (M) € o conjunto poténcia do conjunto M e ND « {z|VS € D,z € S}

Operadores de derivacdo da AFC podem ser considerados, por suas caracteristicas,
como operadores de fechamento [Vimieiro et al. 2005]. Assim, dois conjuntos sdao consi-
derados fechados se B = B,B C M.

Como um conjunto de subconjuntos de um conjunto tem cardinalidade exponen-
cial (2" subconjuntos), o desenvolvimento de algoritmos que verificam se um fechamento
ja foi gerado resulta em um algoritmo de complexidade exponencial. Assim, é necessario
gerar fechamentos em uma ordem predefinida para evitar essa verificacdo, a qual € a ideia
principal do algoritmo Next Closure [Ganter and Stumme 2003]. Considerando A C M e
m; € M, os passos deste algoritmo podem ser resumidos da seguinte forma:

1. Remova, de A, todos os elementos maiores que m;(A N {my,...,m;_1});
2. Una o conjunto de resultado do passo 1 ao conjunto {m;};
3. Aplique o operador de fechamento (.)” ao conjunto resultante do passo 2.

3. Método FCANN para Extracao de Conhecimento de RNAs

Nesta secdo, os passos do método FCANN para extracdo de conhecimento de RNAs pre-
viamente treinadas € discutido brevemente. Assume-se, aqui, uma rede neural perceptron
em multiplas camadas, feedforward, totalmente conectada, com n entradas e m = 1 saida.

1. Selecione um conjunto representativo de dados para treinar a rede (Equagao 3):

no qual x;; parai=1,...,ke j =1,..,n — 1 sdo os parametros de entrada e z;,, para
i=1,...,k asaida, a qual deve ter a distribuicao de probabilidade conhecida.

2. Defina a estrutura da RNA, com n entradas, h camadas e m saidas, € treine-a.

3. Construa uma base de dados sintética, considerando os limites dos dominios dos
parametros de entrada. A base de dados sintética é construida para operar a rede
neural treinada e obter os valores do pardmetro de saida, tentando revelar o conhe-
cimento adquirido. Esta base pode ser definido conforme a Equagdo 4:

Y = [Yijlpxn—1 4)

na qual Y possui elementos gerados e p representa o nimero de registros (Equacao
7). Cada pardmetro de entrada possui valores minimos e maximos conhecidos. O
vetor W (Equagdo 5) define o numero de intervalos que vai ser gerado para cada
parametro, entre os valores minimos € maximos:



W=wj=1,.,n-1 (5)
Assim, o intervalo de variacao de cada parametro na composi¢ao da base sintética
pode ser expresso conforme a Equacdo 6:

lvj — ujl

Int ={l1,I5,....1,1} ondel; = forj=1,..n—1 (6)

(2
Os valores de cada pardmetro usados para gerar a base de dados sintética podem
ser representados por:

St Sie e S1n-1
So1 Soo - Sonoa
Sw171 Sw272 e Swn717n—1

Pode-se observar que o nimero de conjuntos p a serem gerados depende do
numero de dados para cada parametro, tal como na Equacao 7

n-1
p=W1><W2><,...,><Wn,1= HWZ (7)
i=1

4. Apresente a base sintética Y a rede para obter o parametro de saida Z = [zij]pxl,
p qual tem de possuir a mesma funcdo de probabilidade ja conhecida. Se e, .
=|T1 —Z2| °S(x,z) = |S(z)1 — S(z)2| representarem grandes erros, volte ao passo 1.

5. Classifique os pardmetros da matriz U = [Y, Z],x,, em intervalos discretos.

6. Construa uma tabela cruzada do contexto formal para discretizar as n varidveis,
estabelecendo uma relag@o bindria de incidéncia entre objetos e atributos.

7. Obtenha o conceito formal e construa seu diagrama de linha.

8. Aplique o algoritmo Next Closure a fim de obter o conjunto de regras denominado
Dugquenne-Guigues Base, composto por regras do tipo “SE ... ENTAO”.

4. Melhorias Propostas para o Modelo FCANN

Nesta se¢do, sdo apresentadas as melhorias adotadas a fim de suprir os problemas detec-
tados no método FCANN. O primeiro problema detectado remete-se a escalabilidade do
método, o qual define um contexto formal (G, M, I), no qual M| = > D, |G| = p, n+m
¢ o nimero de parametros (entrada e saida) da RNA e D; € o intervalo de discretizacao
utilizado em cada parametro. O segundo problema detectado € a falta de correlagdo direta
entre as regras extraidas e o reticulado conceitual, dificultando a andlise do conhecimento
obtido por meio do conjunto minimos de regras e do reticulado.

Para resolver o primeiro problema, propde-se a adocdo associagcdes entre item-
sets frequentes e conceitos formais frequentes [Stumme et al. 2002]. Reticulados concei-
tuais construidos apenas com conceitos formais frequentes sdo conhecidos na literatura
como reticulados conceituais Iceberg [Stumme et al. 2002]. Considerando um conceito
formal (X,Y), o conjunto Y C M (e (X,Y)) serd frequente se, e somente se, |Y| > minSup
[Carpineto and Romano 2004], no qual minSup € um limite de suporte minimo.

Como a frequéncia de cada atributo m; € Y € fixa, adota-se um peso adicio-
nal para estes atributos, o qual corresponde a frequéncia de m; em um contexto formal



construido com o conjunto de dados original. Para tal, utilizam-se os mesmos inter-
valos de discretizacdo utilizados no passo 5 do FCANN. Assim, considera-se um con-
ceito formal (X,Y) frequente se, e somente se, os conceitos formais sdo frequentes e
(IY| + weight(m;)) > minSup. E importante observar que ifemsets e conceitos frequentes
sdo bastante correlacionados. O suporte de qualquer ifemset Y € igual ao suporte de seu
fechamento Y”, o que garante que quaisquer itemsets frequentes sdo unicamente determi-
nados por conceitos frequentes [Stumme et al. 2002].

O segundo problema, referente a falta de correlacao direta entre as regras extraidas
e o reticulado conceitual, € aqui abordado utilizando regras de implicac¢ao diretamente do
reticulado conceitual. Uma regra de implicacdo A — B pertence a um contexto formal
(G, M, I) se, e somente se, (B’,B") > (A’, A”) [Carpineto and Romano 2004]. Entretanto,
o conjunto de regras extraido pode ser redundante [Maier 1983]. Essas redundancias,
entretanto, podem ser removidas em tempo polinomial [Carpineto and Romano 2004].

Para gerar todos os conceitos formais frequentes e extrair regras de implicacao,
pode-se utilizar a ferramenta Sophiann [Zarate et al. 2006b], bem como os algoritmos
Frequent Next Neighbors e Find Implications [Carpineto and Romano 2004].

5. Estudo de Caso

Nesta secdo, € apresentado um estudo de caso de extragdo de regras de um sistema
real utilizando o método FCANN modificado. Para tal, escolheu-se o sistema termos-
sifao [Zarate et al. 2006a], o sistema mais utilizado de aquecimento solar de dgua. Sua
eficiéncia é influenciada por parametros operacionais e de instalacdo. A extracdao de co-
nhecimento aqui visa compreender o comportamento desses parametros.

5.1. Representacao Neural

Temperatura de entrada da dgua (T'in), irradiacdo solar (G), temperatura do ambiente
(T'amb), taxa de fluxo (m), inclinac@o do coletor solar (I) e altura do tanque de armaze-
namento de dgua (H) sdo variaveis utilizadas como entradas da rede neural. Todas essas
varidveis sdo mapeadas na temperatura de saida da d4gua (Tout), conforme a Equacao 8:

f(Tin, G, Tamb,m, 1, H) "~ (Tour) (8)

Utilizou-se uma rede neural do tipo perceptron em maultiplas camadas (MLP),
feedforward, uma camada intermedidria e com neurdnios de camadas consecutivas total-
mente conectados. Para o treinamento, utilizou-se o algoritmo backpropagation, com
funcdo log-sigmoide de ativacdo nos neurdnios. Como sugerido em [Kovécs 1996],
utilizou-se 2N + 1 neurdnios na camada intermedidria, na qual N € o nimero de entra-
das da rede neural. Portanto, a estrutura da rede possui N = 6 neur6nios na camada de
entrada, 13 neurdnios na camada intermedidria e M = 1 neur6nio na camada de saida.

Para o processo de treinamento, 117 instancias foram coletadas do sistema, sendo
90% utilizadas no conjunto de treinamento, que continha as instancias com os valores
maximos e minimos de cada parametro e outras escolhidas aleatoriamente. Os dados
foram normalizados no intervalo [0.2,0.8] para facilitar a convergéncia da rede neural,
como sugerido em [Altincay and Demirekler 2002] e mostrado na Equagdo 9, na qual Ln
¢ o valor normalizado, Lo o original € Lmin € Lmax 0 minimo e o maximo do parametro.



Lo— Lma
Ln:w e Lo= Lnx Lmax + (1 — Ln) * Lmin ©)
(Lmax — Lmin)
Para sistemas de termossifao, o maximo erro médio na saida (Tout) recomendado
¢ de 1°C, sendo este o critério adotado para parada do treinamento da RNA. Na Tabela 1,
€ possivel observar os valores de erro obtidos tanto no treinamento quanto no teste.

Tabela 1. Resultados de treinamento e teste da rede neural

Erro (°C) Treinamento | Teste
Minimo 0.01 0.16
Miaximo 1 3.38
Média 0.32 0.99
Desvio Padrao 0.18 1.15

5.2. Extracao de Conhecimento Utilizando o Método FCANN Modificado

Ap6s o treinamento satisfatorio da rede neural, passa-se a aplicacdo do método FCANN
modificado. Para fins de comparacdo da eficiéncia, a configuracio original do método
FCANN também foi aplicada a rede neural. Na Tabela 2 € possivel observar o nimero
de objetos, atributos, conceitos e regras (Stem Base) obtidas em relagdo ao niimero de va-
lores por parametro e intervalos de discretizagdo utilizando o FCANN original. Pode-se
observar que a partir de 6 valores por parametros e intervalos de discretizac¢do, nao foi
possivel obter regras devido ao custo computacional. Além disso, € possivel perceber que
o nimero de conceitos e regras cresce rapidamente, inviabilizando a correta aprendiza-
gem. Com isso, mostra-se uma necessidade de adocdo de valores limiares, podando o
reticulado conceitual e extraindo regras apenas de conceitos formais mais relevantes.

Tabela 2. Numero de objetos, atributos, conceitos e regras obtidos

Dados por parametro e intervalos de discretizacao

2 3 4 5 6 7 8
Objetos |G| 64 | 729 | 4096 | 15625 | 46656 | 117649 | 262144
Atributos [ V] 14 | 21 | 28 35 42 49 56

Numero de conceitos | 1084 | 8174 | 34396 | 109205 | 282829 | 643944 | 1303887
Niumero de regras 80 1039 | 5667 | 22266 - - -

Adotando as modificag¢des, aplicou-se um limiar de suporte minimo ao contexto
formal. Ao incrementar o suporte minimo, o nimero de regras decresce, filtrando apenas
os conceitos formais mais relevantes e, consequentemente, as regras de implicacdo mais
relevantes. A Figura 1 mostra, em escala logaritmica, esta relacao.

Com isso, consegue-se um compromisso entre o suporte minimo, a qualidade das
regras e, consequentemente, do conhecimento extraido. Além disso, é possivel aumentar
a escalabilidade do método FCANN. Em relag¢ao ao conjunto de regras extraidas, apesar
de este ndo ser um conjunto minimo, completo e nao-redundante, este pode ser facilmente
analisado pelo usudrio. Além disso, apresenta regras mais representativas, uma vez que
foram extraidas apenas dos conceitos formais mais relevantes. Outro ganho remete-se a
possibilidade da anélise das regras diretamente do reticulado conceitual.
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Figura 1. Relacao entre numeros de conceitos formais, regras e suporte minimo

Para o contexto formal deste exemplo, 18 regras de implicacdo foram obtidas,
adotando um suporte minimo de 50%. Foram obtidas, por exemplo, as seguintes regras:

If G=8Then/=3 IfM=3Then/=3 1If G=8 Then H=8§
If M=3 Then H=8 If G=8 Then H=3 If M=3 Then H=3

No reticulado conceitual Iceberg gerado para este exemplo, ndo mostrado aqui por
limitacdes de espago, somente os conceitos formais mais representativos estao presentes,
existindo uma relagdo direta entre as regras e o reticulado. Além das 18 regras obtidas,
outras podem ser inferidas por implica¢des 16gicas ou por andlise visual do reticulado.

6. Conclusoes

Neste trabalho, adaptou-se o método FCANN para dar-lhe maior escalabilidade e extrair
regras mais compreensiveis. Foi possivel, com essas modifica¢des, reduzir a comple-
xidade do reticulado conceitual com a associacdo entre itemsets frequentes e conceitos
formais frequentes, propondo-se, assim, a representacdo do conhecimento extraido das
redes neurais por meio do reticulado conceitual Iceberg. Utilizando um suporte minimo,
foi possivel selecionar os conceitos formais frequentes, obtendo um compromisso entre o
conhecimento extraido, a representatividade das regras e o suporte minimo.

Ao utilizar o reticulado conceitual Iceberg, apenas conceitos formais mais relevan-
tes sdo representados, o que possibilita, em muitos casos, a visualizacdo do reticulado. A
visualizacao do reticulado € adequada para processos de aprendizagem no qual o usudrio
procura compreender algum processo através do método FCANN. Outra vantagem da
visualiza¢do do reticulado € permitir facilmente a inferéncia de novas regras.

Utilizou-se, também, a extracdo de regras de implicacao diretamente do reticulado
conceitual. Essa extracdo, quando comparada com a extracdo do conjunto minimo de re-
gras, apresenta algumas vantagens. Extrai-se uma quantidade menor de regras, apenas
as mais relevantes sdo selecionadas e existe uma relacdo direta entre as regras e o reti-
culado conceitual, facilitando a aprendizagem. Entretanto, o conjunto de implicagdes €
redundante, podendo essas redundancias serem eliminadas em tempo polinomial.

Por fim, € importante destacar que as mudangas propostas para o método FCANN
podem ser adotadas por outros métodos para reduzir a complexidade do reticulado con-
ceitual. Além disso, € possivel adotar outros paradigmas de construcao de reticulados.
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