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Introdução

• Redes Neurais Artificiais (RNAs) têm sido muito utilizadas 
para a representação de processos reais complexos, 
especialmente industriais

• Elas possuem a capacidade de obter relações entre os 
parâmetros de entrada e saída de um domínio

– Parâmetros de entrada são mapeados em parâmetros de saída 
da rede por uma função implícita

• Este comportamento torna as RNAs uma “caixa preta” e 
nenhuma informação pode ser obtida de sua estrutura interna
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Introdução

• Diversas pesquisas são encontradas na busca de extrair 
conhecimento de RNAs

– Por exemplo,[Tickle et al. 1998],[Benítez et al. 1997] e 
[Craven 1996]

• Recentemente, a Análise Formal de Conceitos (AFC) vem 
sendo utilizada com sucesso para extrair conhecimento de 
RNAs previamente treinadas

• Destaca-se, aqui, o método FCANN [Zárate e Dias 2008], o 
qual extrai relações qualitativas aprendidas pela RNA, 
independente de sua estrutura



Introdução

• O método  FCANN aplica o algoritmo Next Closure [Ganter 
e Stumme 2003] para a obtenção de regras do tipo “Se ... 
Então...” 

– O conjunto de regras é mínima, completa e não redundante e 
chamada Stem Base ou Duquenne-Guigues Base

• Entretanto, a obtenção dessa base mínima não é trivial, 
sendo pouco encontrada em casos práticos e com custo 
computacional proibitivo para muitas aplicações



Introdução

• Não existe uma relação direta entre o conjunto mínimo de 
regras o reticulado conceitual

• Grande quantidade de regras e conceitos formais, o que 
dificulta sua análise visual

• Dificuldade de derivar logicamente o conjunto mínimo de 
regras utilizando axiomas para inferir novas regras



Introdução

• Esse trabalho aborda os dois principais problemas 
observados no método FCANN:

– Dificuldade de extrair um grande conjunto de conceitos 
formais e regras 

– Dificuldade de análise do conhecimento obtido através do 
conjunto mínimo de regras e do reticulado conceitual 

• Propõe-se:

– Construção do reticulado conceitual usando itemsets 
frequentes (reticulados Iceberg)

– Extrair regras de implicação do reticulado



Análise Formal de Conceitos 

• Método matemático voltado para a representação de 
conhecimento por meio de diagramas de linha, os quais são 
representações de um reticulado conceitual

• Contexto formal: (G,M,I), sendo I ⊆ G × M uma relação de 
incidência, sendo G objetos  e M atributos



Análise Formal de Conceitos 



Análise Formal de Conceitos 

• Conceitos formais são pares ordenados (A, B), em que A e B 
são subconjunto do conjunto de objetos e atributos

• Reticulados conceituais conjunto de todos os conceitos 
formais de um contexto formal ordenados hierarquicamente pela 
ordem de inclusão

{b}  {e, f, i}



Método FCANN 

RNA
Treinada

FCANN

IF G=4 THEN Tamb =3 AND Tout =4

IF G=2 THEN Tamb =1 AND Tout =5

IF Tin = 3 THEN Tamb=4

...

Regras lógicas Representação gráfica



Método FCANN 
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Melhorias Propostas para o 
Modelo FCANN

• Uso de reticulados conceituais frequentes.

– Reticulados conceituais construídos apenas com conceitos formais 
frequentes são conhecidos na literatura como reticulados conceituais 
Iceberg [Stumme et al. 2002]  

 

• Um conceito formal (X,Y) será frequente se, somente se, 
sup(Y,G)  ≥ minSup

– Em que minSup é o suporte mínimo fornecido pelo usuário
 

• Utilizar uma frequência artificial em Y, pois os atributos criados 
a partir dos parâmetros de entrada da RNA possuem a mesma 
frequência



Melhorias Propostas para o 
Modelo FCANN

• Extraia regras e implicação

• Uma regra de implicação Se A Então B pertence a um 
contexto formal (G,M,I) se, e somente se, (B',B'')  ≥ (A',A'')

• (') - operadores de derivação



Estudo de Caso

• Sistema termossifão -  sistema mais utilizado para 
aquecimento solar de água

• Sua eficiência é influenciada por parâmetros operacionais e 
de instalação

• A extração de conhecimento aqui visa compreender o 
comportamento de seus parâmetros



• Parâmetros: 

– temperatura de entrada da água
– irradiação solar
– temperatura do ambiente
– taxa de fluxo
– inclinação do coletor solar
– altura do tanque de armazenamento de água
– temperatura de saída da água

Representação Neural



Representação Neural

• Rede neural do tipo perceptron em múltiplas camadas (MLP) 
e feedforward

• Uma camada intermediária e com neurônios de camadas 
consecutivas totalmente conectados

• Para o treinamento, utilizou-se o algoritmo backpropagation, 
com função log-sigmoide de ativação nos neurônios. 



Representação Neural

•  2N+1 neurônios na camada intermediária, na qual N é o 
número de entradas da rede neural, totalizando 13 neurônios 
na camada intermediária e M = 1 neurônio na camada de 
saída

• Para o processo de treinamento, 117 instâncias foram 
coletadas do sistema

• 90% utilizado no conjunto de treinamento

– Continha as instâncias com os valores máximos e mínimos de 
cada parâmetro e outras escolhidas aleatoriamente 

• Os dados foram normalizados no intervalo [0.2, 0.8]



Representação Neural



Extração de Conhecimento 
Utilizando o Método 



Extração de Conhecimento 
Utilizando o Método FCANN 

Modificado



Extração de Conhecimento 
Utilizando o Método FCANN 

Modificado
• Reticulado Iceberg para um suporte mínimo de 50%

• Exemplo de regras



Extração de Conhecimento 
Utilizando o Método FCANN 

Modificado
• Reticulado Iceberg para um suporte mínimo de 40%



Conclusões

• Utilizando um suporte mínimo, foi possível selecionar os 
conceitos formais frequentes

• Compromisso entre o conhecimento extraído, a 
representatividade das regras e o suporte mínimo 

• Possibilita, em muitos casos, a visualização do reticulado, 
que é adequada para processos de aprendizagem no qual o 
usuário procura compreender algum processo 



Conclusões

• Extração de regras de implicação diretamente do reticulado 
conceitual

• Apenas regras relevantes são selecionadas e existe uma relação 
direta entre as regras e o reticulado conceitual, facilitando a 
aprendizagem 

• As mudanças propostas para o método FCANN podem ser 
adotadas por outros métodos para reduzir a complexidade do 
reticulado conceitual. Além disso, é possível adotar outros 
paradigmas de construção de reticulados.
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