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* Redes Neurais Artificiais (RNAs) tém sido muito utilizadas
para a representacao de processos reais complexos,
especialmente industriais

* Elas possuem a capacidade de obter relacoes entre os
parametros de entrada e salda de um dominio

— Parametros de entrada sao mapeados em parametros de saida
da rede por uma funcao implicita

* Este comportamento torna as RNAs uma “caixa preta” e
nenhuma informacdo pode ser obtida de sua estrutura interna
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* Diversas pesquisas sao encontradas na busca de extrair
conhecimento de RNAs

— Por exemplo,|[Tickle et al. 1998],[Benitez et al. 1997] e
|Craven 1996]

* Recentemente, a Analise Formal de Conceitos (AFC) vem
sendo utilizada com sucesso para extrair conhecimento de
RINAs previamente treinadas

* Destaca-se, aqui, 0 método FCANN [Zarate e Dias 2008], o
qual extrai relacdes qualitativas aprendidas pela RNA,
independente de sua estrutura



* O meétodo FCANN aplica o algoritmo Next Closure [Ganter
e Stumme 2003] para a obtencao de regras do tipo “Se ...
Entdo...”

— O conjunto de regras ¢ minima, completa e nao redundante e
chamada Stem Base ou Duquenne-Guigues Base

* Entretanto, a obtencao dessa base minima ndo é trivial,
sendo pouco encontrada em casos praticos e com custo
computacional proibitivo para muitas aplicacoes



* Nao existe uma relacao direta entre o conjunto minimo de
regras o reticulado conceitual

* Grande quantidade de regras e conceitos formais, o que
dificulta sua analise visual

* Dificuldade de derivar logicamente o conjunto minimo de
regras utilizando axiomas para inferir novas regras



* Esse trabalho aborda os dois principais problemas
observados no método FCANN:

— Dificuldade de extrair um grande conjunto de conceitos
formais e regras

— Dificuldade de analise do conhecimento obtido através do
conjunto minimo de regras e do reticulado conceitual

* Propoe-se:

— Construcao do reticulado conceitual usando itemsets
frequentes (reticulados Iceberg)
— Extrair regras de implicacdo do reticulado



* Meétodo matematico voltado para a representacao de
conhecimento por meio de diagramas de linha, os quais sao
representacoes de um reticulado conceitual

* Contexto formal: (G,M,l), sendo | 7 G x M uma relacao de
Incidéncia, sendo G objetos e M atributos

Tamanho Distancia do sol Lua Periodo
Pequeno | Médio | Grande | Proxamo | Distante| Sim | Nfio | Curto | Longo

Mercirio 4 4 3 3

Venus X X X b

Terra 4 4 b4 #

Marte X X X 3

Jupiter H H # H

Saturno # # b4 #

Urano 3 3 3 4
Netuno 4 3 3 3

Plutio X 3 X 4
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* Conceitos formais sdao pares ordenados (A, B), em que A e B
sdo subconjunto do conjunto de objetos e atributos

* Reticulados conceituais conjunto de todos os conceitos
formais de um contexto formal ordenados hierarquicamente pela
ordem de inclusao

' b} > {e 1, i}




Método FCANN

Trlzii_\da :>

IF G=4 THEN Tamb =3 AND Tout =4

IF G=2 THEN Tamb =1 AND Tout =5
IF Tin = 3 THEN Tamb=4

Regras logicas Representacao grafica



Método FCANN
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* Uso de reticulados conceituais frequentes.

— Reticulados conceituais construidos apenas com conceitos formais
frequentes sao conhecidos na literatura como reticulados conceituais
Iceberg [ Stumme et al. 2002]

* Um conceito formal (X,Y) sera frequente se, somente se,
sup(Y,G) > minSup

— Em que minSup é o suporte minimo fornecido pelo usuario
 Utilizar uma frequéncia artificial em Y, pois os atributos criados

a partir dos parametros de entrada da RNA possuem a mesma
frequéncia



Melhorias Propostas para o
Modelo FCANN

* Extraia regras e implicacao

* Uma regra de implicacao Se A Entdo B pertence a um
contexto formal (G,M,I) se, e somente se, (B',B") > (A"A")

* (') - operadores de derivagao



* Sistema termossifdao - sistema mais utilizado para
aquecimento solar de agua

* Sua eficiencia é influenciada por parametros operacionais e
de instalacao

* A extracao de conhecimento aqui visa compreender o
comportamento de seus parametros
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 Parametros:

— temperatura de entrada da agua

— Irradiacao solar

— temperatura do ambiente

— taxa de fluxo

— inclinacao do coletor solar

— altura do tanque de armazenamento de agua
— temperatura de saida da agua

f(Tin, G, Tamb, m, I, H) "% (Tour)



* Rede neural do tipo perceptron em multiplas camadas (MLP)
e feedforward

* Uma camada intermediaria e com neuronios de camadas
consecutivas totalmente conectados

* Para o treinamento, utilizou-se o algoritmo backpropagation,
com funcao log-sigmoide de ativacao nos neuronios.



2N+1 neuronios na camada intermediaria, na qual N é o
numero de entradas da rede neural, totalizando 13 neuronios
na camada intermediaria e M = 1 neuronio na camada de
saida

Para o processo de treinamento, 117 instancias foram
coletadas do sistema

90% utilizado no conjunto de treinamento

— Continha as instancias com os valores maximos e minimos de
cada parametro e outras escolhidas aleatoriamente

Os dados foram normalizados no intervalo [0.2, 0.8]



Representacao Neural

Tabela 1. Resultados de treinamento e teste da rede neural

Erro (°C) Treinamento | Teste
Minimo 0.01 0.16
Maximo 1 3.38
Meédia 0.32 0.99
Desvio Padrao 0.18 1.15




Extracao de Conhecimento
Utilizando o Método

Tabela 2. Numero de objetos, atributos, conceitos e regras obtidos

Dados por parametro e intervalos de discretizacao

2 3 4 5 6 7 8
Objetos |G| 64 729 | 4096 | 15625 | 46656 | 117649 | 262144
Atributos | M | 14 21 28 35 42 49 56
Numero de conceitos | 1084 | 8174 | 34396 | 109205 | 282829 | 643944 | 1303887
Numero de regras 80 | 1039 | 5667 | 22266 - - -




Extracao de Conhecimento
Utilizando o Método FCANN
Modificado

Figura 1. Relacao entre numeros de conceitos formais, regras e suporte minimo



Extracao de Conhecimento
Utilizando o Método FCANN
Modificado

* Reticulado Iceberg para um suporte minimo de 50%
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* Exemplo de regras

If G=8Then/=3 IfM=3Then/=3 If G=8 Then H=8§
If M=3 Then H=8 If G=8 Then H=3 If M=3 Then H=3



Extracao de Conhecimento
Utilizando o Método FCANN

Modificado

* Reticulado Iceberg para um suporte minimo de 40%




* Utilizando um suporte minimo, foi possivel selecionar os
conceitos formais frequentes

* Compromisso entre o conhecimento extraido, a
representatividade das regras e o suporte minimo

* Possibilita, em muitos casos, a visualizacdo do reticulado,
que e adequada para processos de aprendizagem no qual o
usuario procura compreender algum processo



* Extracao de regras de implicacao diretamente do reticulado
conceitual

* Apenas regras relevantes sao selecionadas e existe uma relacao
direta entre as regras e o reticulado conceitual, facilitando a
aprendizagem

* As mudancas propostas para o metodo FCANN podem ser
adotadas por outros métodos para reduzir a complexidade do
reticulado conceitual. Alem disso, e possivel adotar outros
paradigmas de construcao de reticulados.
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